Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "Should Pregnant Women Move? Linking Risks for Birth Defects with Proximity to Toxic Waste Sites" (Chance [1992]: 40-45) reported that in a large study carried out in the state of New York, approximately \(30 \%\) of the study subjects lived within 1 mi of a hazardous waste site. Let \(\pi\) denote the proportion of all New York residents who live within 1 mi of such a site, and suppose that \(\pi=.3\). a. Would \(p\) based on a random sample of only 10 residents have approximately a normal distribution? Explain why or why not. b. What are the mean value and standard deviation of \(p\) based on a random sample of size \(400 ?\) c. When \(n=400\), what is \(P(.25 \leq p \leq .35)\) ? d. Is the probability calculated in Part (c) larger or smaller than would be the case if \(n=500 ?\) Answer without actually calculating this probability.

Short Answer

Expert verified
a. No, it will not follow an approximately normal distribution. b. Mean \(\mu=0.3\) and Standard Deviation would be calculated using the formula. c. The probability \(P(.25 \leq p \leq .35)\) will be the area under the normal curve between the calculated Z-scores. d. The probability is smaller when n=500.

Step by step solution

01

Check for Normal Distribution

The sample proportion \(p\) will follow an approximately normal distribution if both \(n \pi\) and \(n (1-\pi)\) are greater than or equal to 10 where \(\pi\) is the true proportion and \(n\) is the sample size. In this case, \(\pi = 0.3\) and sample size \(n = 10\). Now calculate \(n \pi = 10 * 0.3 = 3\) and \(n (1-\pi) = 10 * (1-0.3) = 7\). Both values are less than 10, so the sample proportion will not approximately follow a normal distribution.
02

Calculate Mean and Standard Deviation

The mean and standard deviation of \(p\) satisfying \(n \pi\) or \(n (1-\pi)\) > 10 are given by, Mean: \(\mu =\pi\) and Standard Deviation: \(\sigma =\sqrt{\frac{\pi * (1 - \pi)}{n}}\). Inputting the given values, mean is \(\mu = 0.3\) and the standard deviation is \(\sigma = \sqrt{\frac{0.3 * (1 - 0.3)}{400}}\).
03

Calculate Probability Range

In order to calculate the probability \(P(.25 \leq p \leq .35)\), we need to standardize \(p\) by subtracting the mean and dividing by the standard deviation to compute the Z-scores, correspondingly. Z_score_1 = \((0.25 - \mu) / \sigma\) and Z_score_2 = \((0.35 - \mu) / \sigma\). The required probability is the area under the standard normal curve between these two Z scores.
04

Determine Probability for Different Sample Sizes

If we increase the sample size from 400 to 500, the standard deviation decreases, because the standard deviation of \(p\) is inversely proportional to the square root of the size of the sample (i.e., \(\sigma = \sqrt{\pi * (1 - \pi) / n}\)). As a result, the interval between 0.25 and 0.35 around the mean represents a wider range, therefore, the probability for this range \(P(.25 ≤ p ≤ .35)\) would be smaller when \(n=500\) compared to \(n=400\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the following population: \(\\{1,2,3,4\\}\). Note that the population mean is $$\mu=\frac{1+2+3+4}{4}=2.5$$ a. Suppose that a random sample of size 2 is to be selected without replacement from this population. There are 12 possible samples (provided that the order in which observations are selected is taken into account): \(\begin{array}{cccccc}1,2 & 1,3 & 1,4 & 2,1 & 2,3 & 2,4 \\ 3,1 & 3,2 & 3,4 & 4,1 & 4,2 & 4,3\end{array}\) Compute the sample mean for each of the 12 possible samples. Use this information to construct the sampling distribution of \(\bar{x}\). (Display the sampling distribution as a density histogram.) b. Suppose that a random sample of size 2 is to be selected, but this time sampling will be done with replacement. Using a method similar to that of Part (a), construct the sampling distribution of \(\bar{x}\). (Hint: There are 16 different possible samples in this case.) c. In what ways are the two sampling distributions of Parts (a) and (b) similar? In what ways are they different?

Suppose that a particular candidate for public office is in fact favored by \(48 \%\) of all registered voters in the district. A polling organization will take a random sample of 500 voters and will use \(p\), the sample proportion, to estimate \(\pi\). What is the approximate probability that \(p\) will be greater than .5, causing the polling organization to incorrectly predict the result of the upcoming election?

The thickness (in millimeters) of the coating applied to disk drives is a characteristic that determines the usefulness of the product. When no unusual circumstances are present, the thickness \((x)\) has a normal distribution with a mean of \(3 \mathrm{~mm}\) and a standard deviation of \(0.05\) \(\mathrm{mm}\). Suppose that the process will be monitored by selecting a random sample of 16 drives from each shift's production and determining \(\bar{x}\), the mean coating thickness for the sample. a. Describe the sampling distribution of \(\bar{x}\) (for a sample of size 16 ). b. When no unusual circumstances are present, we expect \(\bar{x}\) to be within \(3 \sigma_{\bar{x}}\) of \(3 \mathrm{~mm}\), the desired value. An \(\bar{x}\) value farther from 3 than \(3 \sigma_{\bar{x}}\) is interpreted as an indication of a problem that needs attention. Compute \(3 \pm 3 \sigma_{\bar{x}}\). (A plot over time of \(\bar{x}\) values with horizontal lines drawn at the limits \(\mu \pm 3 \sigma_{\bar{x}}\) is called a process control chart.) c. Referring to Part (b), what is the probability that a sample mean will be outside \(3 \pm 3 \sigma_{\bar{x}}\) just by chance (i.e., when there are no unusual circumstances)? d. Suppose that a machine used to apply the coating is out of adjustment, resulting in a mean coating thickness of \(3.05 \mathrm{~mm}\). What is the probability that a problem will be detected when the next sample is taken? (Hint: This will occur if \(\bar{x}>3+3 \sigma_{\bar{x}}\) or \(\bar{x}<3-3 \sigma_{\bar{x}}\) when \(\mu=\) 3.05.) b. When no unusual circumstances are present, we expect \(\bar{x}\) to be within \(3 \sigma_{\bar{x}}\) of \(3 \mathrm{~mm}\), the desired value. An \(\bar{x}\) value farther from 3 than \(3 \sigma_{\bar{x}}\) is interpreted as an indication of a problem that needs attention. Compute \(3 \pm 3 \sigma_{\bar{x}}\). (A plot over time of \(\bar{x}\) values with horizontal lines drawn at the limits \(\mu \pm 3 \sigma_{\bar{x}}\) is called a process control chart.)

For each of the following statements, identify the number that appears in boldface type as the value of either a population characteristic or a statistic: a. A department store reports that \(84 \%\) of all customers who use the store's credit plan pay their bills on time. b. A sample of 100 students at a large university had a mean age of \(24.1\) years. c. The Department of Motor Vehicles reports that \(22 \%\) of all vehicles registered in a particular state are imports. d. A hospital reports that based on the 10 most recent cases, the mean length of stay for surgical patients is \(6.4\) days. e. A consumer group, after testing 100 batteries of a certain brand, reported an average life of \(\mathbf{6 3} \mathrm{hr}\) of use.

College students with a checking account typically write relatively few checks in any given month, whereas nonstudent residents typically write many more checks during a month. Suppose that \(50 \%\) of a bank's accounts are held by students and that \(50 \%\) are held by nonstudent residents. Let \(x\) denote the number of checks written in a given month by a randomly selected bank customer. a. Give a sketch of what the probability distribution of \(x\) might look like. b. Suppose that the mean value of \(x\) is \(22.0\) and that the standard deviation is 16.5. If a random sample of \(n=100\) customers is to be selected and \(\bar{x}\) denotes the sample average number of checks written during a particular month, where is the sampling distribution of \(\bar{x}\) centered, and what is the standard deviation of the \(\bar{x}\) distribution? Sketch a rough picture of the sampling distribution. c. Referring to Part (b), what is the approximate probability that \(\bar{x}\) is at most \(20 ?\) at least 25 ?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free