Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "Unmarried Couples More Likely to Be Interracial" (San Luis Obispo Tribune, March 13, 2002) reported that \(7 \%\) of married couples in the United States are mixed racially or ethnically. Consider the population consisting of all married couples in the United States. a. A random sample of \(n=100\) couples will be selected from this population and \(p\), the proportion of couples that are mixed racially or ethnically, will be computed. What are the mean and standard deviation of the sampling distribution of \(p\) ? b. Is it reasonable to assume that the sampling distribution of \(p\) is approximately normal for random samples of size \(n=100\) ? Explain. c. Suppose that the sample size is \(n=200\) rather than \(n=100\), as in Part (b). Does the change in sample size change the mean and standard deviation of the sampling distribution of \(p ?\) If so, what are the new values for the mean and standard deviation? If not, explain why not. d. Is it reasonable to assume that the sampling distribution of \(p\) is approximately normal for random samples of size \(n=200 ?\) Explain. e. When \(n=200\), what is the probability that the proportion of couples in the sample who are racially or ethnically mixed will be greater than \(.10\) ?

Short Answer

Expert verified
a. Mean = 0.07 and Standard deviation = 0.018;\nb. Yes, it is reasonable because both \(np = 7\) and \(nq = 93\) are greater than 5;\nc. The mean won't change, but the standard deviation will now be 0.012. \nd. Yes, again it's even more reasonable now as both \(np = 14\) and \(nq = 186\) are greater than 5;\ne. First, a z-score= 7.5 is computed then its corresponding probability equals to 0.0001.

Step by step solution

01

Calculate the mean and standard deviation for n = 100

The mean of the sampling distribution of a proportion (\(p\)) is simply the proportion in the population. The standard deviation, on the other hand, uses the formula \(\sqrt{pq/n}\), where \(p = 0.07\) is the proportion of mixed racially or ethnically couples, \(q = 1-p = 0.93\) is the remaining proportion and \(n = 100\) is the sample size. It is essential to apply these values into this formula correctly.
02

Evaluate the normal approximation for n = 100

To evaluate if the sampling distribution of \(p\) can be approximated to a normal distribution, the rule of thumb suggests that both \(np\) and \(nq\) should be greater than 5. Apply the given values into these calculations and compare with the suggested rule.
03

Calculate the mean and standard deviation for n = 200

Repeat step 1, but with \(n = 200\). Note how the standard deviation may change but the mean remains the same, this is because the sample size does not affect the proportion in the population, but it does impact how spread out the sample proportions are likely to be around that mean (standard deviation).
04

Evaluate the normal approximation for n = 200

Repeat step 2 for \(n = 200\). Pay attention to how the larger sample size may affect the approximation to the normal distribution.
05

Compute the probability for n = 200 and p > 0.10

First, calculate a z-score using the formula \((X-μ)/(σ/√n)\), where \(X = 0.10\) is the value for which we're looking to find the probability, and \(μ\) and \(σ\) are the mean and standard deviation of the distribution. Next, find the area to the right of the z-score on a standard normal table to get the required probability.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Newsweek (November 23, 1992) reported that 40\% of all U.S. employees participate in "self-insurance" health plans \((\pi=.40)\). a. In a random sample of 100 employees, what is the approximate probability that at least half of those in the sample participate in such a plan? b. Suppose you were told that at least 60 of the \(100 \mathrm{em}\) ployees in a sample from your state participated in such a plan. Would you think \(\pi=.40\) for your state? Explain.

An airplane with room for 100 passengers has a total baggage limit of 6000 lb. Suppose that the total weight of the baggage checked by an individual passenger is a random variable \(x\) with a mean value of \(50 \mathrm{lb}\) and a standard deviation of \(20 \mathrm{lb}\). If 100 passengers will board a flight, what is the approximate probability that the total weight of their baggage will exceed the limit? (Hint: With \(n=100\), the total weight exceeds the limit when the average weight \(\bar{x}\) exceeds \(6000 / 100\).)

Consider the following population: \(\\{2,3,3,4,4\\}\). The value of \(\mu\) is \(3.2\), but suppose that this is not known to an investigator, who therefore wants to estimate \(\mu\) from sample data. Three possible statistics for estimating \(\mu\) are Statistic \(1:\) the sample mean, \(\bar{x}\) Statistic 2 : the sample median Statistic 3 : the average of the largest and the smallest values in the sample A random sample of size 3 will be selected without replacement. Provided that we disregard the order in which the observations are selected, there are 10 possible samples that might result (writing 3 and \(3^{*}, 4\) and \(4^{*}\) to distinguish the two 3 's and the two 4 's in the population): $$\begin{array}{rlllll} 2,3,3^{*} & 2,3,4 & 2,3,4^{*} & 2,3^{*}, 4 & 2,3^{*}, 4^{*} \\ 2,4,4^{*} & 3,3^{*}, 4 & 3,3^{*}, 4^{*} & 3,4,4^{*} & 3^{*}, 4,4^{*} \end{array}$$ For each of these 10 samples, compute Statistics 1,2, and 3\. Construct the sampling distribution of each of these statistics. Which statistic would you recommend for estimating \(\mu\) and why?

The thickness (in millimeters) of the coating applied to disk drives is a characteristic that determines the usefulness of the product. When no unusual circumstances are present, the thickness \((x)\) has a normal distribution with a mean of \(3 \mathrm{~mm}\) and a standard deviation of \(0.05\) \(\mathrm{mm}\). Suppose that the process will be monitored by selecting a random sample of 16 drives from each shift's production and determining \(\bar{x}\), the mean coating thickness for the sample. a. Describe the sampling distribution of \(\bar{x}\) (for a sample of size 16 ). b. When no unusual circumstances are present, we expect \(\bar{x}\) to be within \(3 \sigma_{\bar{x}}\) of \(3 \mathrm{~mm}\), the desired value. An \(\bar{x}\) value farther from 3 than \(3 \sigma_{\bar{x}}\) is interpreted as an indication of a problem that needs attention. Compute \(3 \pm 3 \sigma_{\bar{x}}\). (A plot over time of \(\bar{x}\) values with horizontal lines drawn at the limits \(\mu \pm 3 \sigma_{\bar{x}}\) is called a process control chart.) c. Referring to Part (b), what is the probability that a sample mean will be outside \(3 \pm 3 \sigma_{\bar{x}}\) just by chance (i.e., when there are no unusual circumstances)? d. Suppose that a machine used to apply the coating is out of adjustment, resulting in a mean coating thickness of \(3.05 \mathrm{~mm}\). What is the probability that a problem will be detected when the next sample is taken? (Hint: This will occur if \(\bar{x}>3+3 \sigma_{\bar{x}}\) or \(\bar{x}<3-3 \sigma_{\bar{x}}\) when \(\mu=\) 3.05.) b. When no unusual circumstances are present, we expect \(\bar{x}\) to be within \(3 \sigma_{\bar{x}}\) of \(3 \mathrm{~mm}\), the desired value. An \(\bar{x}\) value farther from 3 than \(3 \sigma_{\bar{x}}\) is interpreted as an indication of a problem that needs attention. Compute \(3 \pm 3 \sigma_{\bar{x}}\). (A plot over time of \(\bar{x}\) values with horizontal lines drawn at the limits \(\mu \pm 3 \sigma_{\bar{x}}\) is called a process control chart.)

Explain the difference between \(\sigma\) and \(\sigma_{\bar{x}}\) and between \(\mu\) and \(\mu_{\bar{x}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free