Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A random sample is to be selected from a population that has a proportion of successes \(\pi=.65 .\) Determine the mean and standard deviation of the sampling distribution of \(p\) for each of the following sample sizes: a. \(n=10\) b. \(n=20\) c. \(n=30\) d. \(n=50\) e. \(n=100\) f. \(n=200\)

Short Answer

Expert verified
The proportions mean is .65 for all given sample sizes. The standard deviations are: for \(n = 10\) it's 0.142, for \(n = 20\) it's 0.100, for \(n = 30\) it's 0.082, for \(n = 50\) it's 0.065, for \(n = 100\) it's 0.046 and for \(n = 200\) it's 0.033.

Step by step solution

01

Calculate Mean and Standard Deviation for \(n = 10\)

Starting with \(n = 10\), the mean \(\mu_p\) using the formula \(\mu_p = \pi\) will be .65 and the standard deviation \(\sigma_p\) using the formula \(\sigma_p = \sqrt{\pi*(1-\pi)/n}\) will be \(\sqrt{0.65*(1-0.65)/10} = 0.142\) after rounding to three decimal places.
02

Calculate Mean and Standard Deviation for \(n = 20\)

Now with \(n = 20\), the mean stays the same (.65) while the standard deviation is calculated as \(\sqrt{0.65*(1-0.65)/20} = 0.100\) after rounding.
03

Continue Calculating Mean and Standard Deviation for Remaining Samples

Following the same process for the rest of the sample sizes, the standard deviation for \(n = 30\) is 0.082, for \(n = 50\) it's 0.065, for \(n = 100\) it's 0.046 and for \(n = 200\) it's 0.033.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(x\) denote the time (in minutes) that it takes a fifth-grade student to read a certain passage. Suppose that the mean value and standard deviation of \(x\) are \(\mu=2 \mathrm{~min}\) and \(\sigma=0.8\) min, respectively. a. If \(\bar{x}\) is the sample average time for a random sample of \(n=9\) students, where is the \(\bar{x}\) distribution centered, and how much does it spread out about the center (as described by its standard deviation)? b. Repeat Part (a) for a sample of size of \(n=20\) and again for a sample of size \(n=100\). How do the centers and spreads of the three \(\bar{x}\) distributions compare to one another? Which sample size would be most likely to result in an \(\bar{x}\) value close to \(\mu\), and why?

A random sample is selected from a population with mean \(\mu=100\) and standard deviation \(\sigma=10 .\) Determine the mean and standard deviation of the \(\bar{x}\) sampling distribution for each of the following sample sizes: a. \(n=9\) b. \(n=15\) c. \(n=36\) d. \(n=50\) c. \(n=100\) f. \(n=400\)

A manufacturing process is designed to produce bolts with a 0.5-in. diameter. Once each day, a random sample of 36 bolts is selected and the diameters recorded. If the resulting sample mean is less than \(0.49\) in. or greater than \(0.51\) in., the process is shut down for adjustment. The standard deviation for diameter is \(0.02\) in. What is the probability that the manufacturing line will be shut down unnecessarily? (Hint: Find the probability of observing an \(\bar{x}\) in the shutdown range when the true process mean really is \(0.5\) in.)

Suppose that a random sample of size 64 is to be selected from a population with mean 40 and standard deviation 5 . a. What are the mean and standard deviation of the \(\bar{x}\) sampling distribution? Describe the shape of the \(\bar{x}\) sampling distribution. b. What is the approximate probability that \(\bar{x}\) will be within \(0.5\) of the population mean \(\mu\) ? c. What is the approximate probability that \(\bar{x}\) will differ from \(\mu\) by more than \(0.7\) ?

The time that a randomly selected individual waits for an elevator in an office building has a uniform distribution over the interval from 0 to \(1 \mathrm{~min}\). It can be shown that for this distribution \(\mu=0.5\) and \(\sigma=0.289\). a. Let \(\bar{x}\) be the sample average waiting time for a random sample of 16 individuals. What are the mean and standard deviation of the sampling distribution of \(\bar{x}\) ? b. Answer Part (a) for a random sample of 50 individuals. In this case, sketch a picture of a good approximation to the actual \(\bar{x}\) distribution.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free