Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the library on a university campus, there is a sign in the elevator that indicates a limit of 16 persons. Furthermore, there is a weight limit of \(2500 \mathrm{lb}\). Assume that the average weight of students, faculty, and staff on campus is \(150 \mathrm{lb}\), that the standard deviation is \(27 \mathrm{lb}\), and that the distribution of weights of individuals on campus is approximately normal. If a random sample of 16 persons from the campus is to be taken: a. What is the expected value of the sample mean of their weights? b. What is the standard deviation of the sampling distribution of the sample mean weight? c. What average weights for a sample of 16 people will result in the total weight exceeding the weight limit of \(2500 \mathrm{lb} ?\) d. What is the chance that a random sample of 16 persons on the elevator will exceed the weight limit?

Short Answer

Expert verified
Hence the expected value of the sample mean is 150 lb with a standard deviation of 6.75 lb. The average weight for a sample of 16 should be less than or equal to 156.25 lb to avoid exceeding the weight limit of 2500 lb. The chance that 16 randomly chosen persons will exceed the weight limit is approximately 0.176 or 17.6%.

Step by step solution

01

Expected Value

The expected value of the sample mean is the same as the mean of the population. In this instance, it is given as 150 lb.
02

Standard Deviation

The standard deviation of the sample mean weights, also known as the standard error, is the standard deviation of the population divided by the square root of the sample size. The formula is: \(\sigma/\sqrt{n}\), where \(\sigma\) is the standard deviation of the population and \(n\) is the sample size. Substituting the given values, \(\sigma = 27, n = 16\), we get \((27/\sqrt{16}) = 6.75\) lb.
03

Average Weights

To find the average weight that would make a sample of 16 exceed 2500 lb, we divide the total weight by the sample size (16) which is \(2500 / 16 = 156.25\) lb.
04

Chance of Exceeding the weight limit

Firstly, find the Z score by subtracting the mean from the weight limit and then dividing by the standard error like so: \((156.25 - 150) / 6.75 = 0.93\) The Z score table shows that the proportion corresponding to this Z score is 0.8238. However, we are interested in the chance that the weight will exceed 2500 lb so we must take this away from 1, i.e., \(1 - 0.8238 = 0.1762\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(x\) denote the time (in minutes) that it takes a fifth-grade student to read a certain passage. Suppose that the mean value and standard deviation of \(x\) are \(\mu=2 \mathrm{~min}\) and \(\sigma=0.8\) min, respectively. a. If \(\bar{x}\) is the sample average time for a random sample of \(n=9\) students, where is the \(\bar{x}\) distribution centered, and how much does it spread out about the center (as described by its standard deviation)? b. Repeat Part (a) for a sample of size of \(n=20\) and again for a sample of size \(n=100\). How do the centers and spreads of the three \(\bar{x}\) distributions compare to one another? Which sample size would be most likely to result in an \(\bar{x}\) value close to \(\mu\), and why?

College students with a checking account typically write relatively few checks in any given month, whereas nonstudent residents typically write many more checks during a month. Suppose that \(50 \%\) of a bank's accounts are held by students and that \(50 \%\) are held by nonstudent residents. Let \(x\) denote the number of checks written in a given month by a randomly selected bank customer. a. Give a sketch of what the probability distribution of \(x\) might look like. b. Suppose that the mean value of \(x\) is \(22.0\) and that the standard deviation is 16.5. If a random sample of \(n=100\) customers is to be selected and \(\bar{x}\) denotes the sample average number of checks written during a particular month, where is the sampling distribution of \(\bar{x}\) centered, and what is the standard deviation of the \(\bar{x}\) distribution? Sketch a rough picture of the sampling distribution. c. Referring to Part (b), what is the approximate probability that \(\bar{x}\) is at most \(20 ?\) at least 25 ?

Suppose that the mean value of interpupillary distance (the distance between the pupils of the left and right eyes) for adult males is \(65 \mathrm{~mm}\) and that the population standard deviation is \(5 \mathrm{~mm}\). a. If the distribution of interpupillary distance is normal and a sample of \(n=25\) adult males is to be selected, what is the probability that the sample average distance \(\bar{x}\) for these 25 will be between 64 and \(67 \mathrm{~mm}\) ? at least \(68 \mathrm{~mm}\) ? b. Suppose that a sample of 100 adult males is to be obtained. Without assuming that interpupillary distance is normally distributed, what is the approximate probability that the sample average distance will be between 64 and \(67 \mathrm{~mm}\) ? at least \(68 \mathrm{~mm}\) ?

Explain the difference between \(\sigma\) and \(\sigma_{\bar{x}}\) and between \(\mu\) and \(\mu_{\bar{x}}\)

Newsweek (November 23, 1992) reported that 40\% of all U.S. employees participate in "self-insurance" health plans \((\pi=.40)\). a. In a random sample of 100 employees, what is the approximate probability that at least half of those in the sample participate in such a plan? b. Suppose you were told that at least 60 of the \(100 \mathrm{em}\) ployees in a sample from your state participated in such a plan. Would you think \(\pi=.40\) for your state? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free