Chapter 7: Problem 73
Consider babies born in the "normal" range of \(37-\) 43 weeks gestational age. Extensive data support the assumption that for such babies born in the United States, birth wcight is normally distributed with mean \(3432 \mathrm{~g}\) and standard deviation \(482 \mathrm{~g}\) ("Are Babies Normal?" The American Statistician [1999]: \(298-302\) ). a. What is the probability that the birth weight of a randomly selected baby of this type exceeds \(4000 \mathrm{~g}\) ? is between 3000 and \(4000 \mathrm{~g}\) ? b. What is the probability that the birth weight of a randomly selected baby of this type is either less than \(2000 \mathrm{~g}\) or greater than \(5000 \mathrm{~g}\) ? c. What is the probability that the birth weight of a randomly selected baby of this type exceeds \(7 \mathrm{lb}\) ? (Hint: \(1 \mathrm{lb}=453.59 \mathrm{~g} .)\) d. How would you characterize the most extreme \(0.1 \%\) of all birth weights? e. If \(x\) is a random variable with a normal distribution and \(a\) is a numerical constant \((a \neq 0)\), then \(y=a x\) also has a normal distribution. Use this formula to determine the distribution of birth weight expressed in pounds (shape, mean, and standard deviation), and then recalculate the probability from Part (c). How does this compare to your previous answer?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.