Chapter 7: Problem 67
Let \(z\) denote a random variable having a normal distribution with \(\mu=0\) and
\(\sigma=1\). Determine each of the following probabilities:
a. \(P(z<0.10)\)
b. \(P(z<-0.10)\)
c. \(P(0.40
Chapter 7: Problem 67
Let \(z\) denote a random variable having a normal distribution with \(\mu=0\) and
\(\sigma=1\). Determine each of the following probabilities:
a. \(P(z<0.10)\)
b. \(P(z<-0.10)\)
c. \(P(0.40
All the tools & learning materials you need for study success - in one app.
Get started for freeA new battery's voltage may be acceptable (A) or unacceptable (U). A certain flashlight requires two batteries, so batteries will be independently selected and tested until two acceptable ones have been found. Suppose that \(80 \%\) of all batteries have acceptable voltages, and let \(y\) denote the number of batteries that must be tested. a. What is \(p(2)\), that is, \(P(y=2)\) ? b. What is \(p(3) ?\) (Hint: There are two different outeomes that result in \(y=3 .\) ) c. In order to have \(y=5\), what must be true of the fifth battery selected? List the four outcomes for which \(y=5\), and then determine \(p(5)\). d. Use the pattern in your answers for Parts (a)-(c) to obtain a general formula for \(p(y)\).
A pizza company advertises that it puts \(0.5 \mathrm{lb}\) of real mozzarella cheese on its medium pizzas. In fact, the amount of cheese on a randomly selected medium pizza is normally distributed with a mean value of \(0.5 \mathrm{lb}\) and \(\mathrm{a}\) standard deviation of \(0.025 \mathrm{lb}\). a. What is the probability that the amount of cheese on a medium pizza is between \(0.525\) and \(0.550 \mathrm{lb}\) ? b. What is the probability that the amount of cheese on a medium pizza exceeds the mean value by more than 2 standard deviations? c. What is the probability that three randomly selected medium pizzas all have at least \(0.475 \mathrm{lb}\) of cheese?
You are to take a multiple-choice exam consisting of 100 questions with 5 possible responses to each question. Suppose that you have not studied and so must guess (select one of the five answers in a completely random fashion) on each question. Let \(x\) represent the number of correct responses on the test. a. What kind of probability distribution does \(x\) have? b. What is your expected score on the exam? (Hint: Your expected score is the mean value of the \(x\) distribution.) c. Compute the variance and standard deviation of \(x\). d. Based on your answers to Parts (b) and (c), is it likely that you would score over 50 on this exam? Explain the reasoning behind your answer.
A company that manufactures mufflers for cars offers a lifetime warranty on its products, provided that ownership of the car does not change. Suppose that only \(20 \%\) of its mufflers are replaced under this warranty. a. In a random sample of 400 purchases, what is the approximate probability that between 75 and 100 (inclusive) mufflers are replaced under warranty? b. Among 400 randomly selected purchases, what is the probability that at most 70 mufflers are ultimately replaced under warranty? c. If you were told that fewer than 50 among 400 randomly selected purchases were ever replaced under warranty, would you question the \(20 \%\) figure? Explain.
The article on polygraph testing of FBI agents referenced in Exercise \(7.51\) indicated that the probability of a false-positive (a trustworthy person who nonetheless fails the test) is \(.15 .\) Let \(x\) be the number of trustworthy \(\mathrm{FBI}\) agents tested until someone fails the test. a. What is the probability distribution of \(x ?\) b. What is the probability that the first false-positive will occur when the third person is tested? c. What is the probability that fewer than four are tested before the first false-positive occurs? d. What is the probability that more than three agents are tested before the first false-positive occurs?
What do you think about this solution?
We value your feedback to improve our textbook solutions.