Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the following standard normal (z) curve areas: a. The area under the \(z\) curve to the left of \(1.75\) b. The area under the \(z\) curve to the left of \(-0.68\) c. The area under the \(z\) curve to the right of \(1.20\) d. The area under the \(z\) curve to the right of \(-2.82\) e. The area under the \(z\) curve between \(-2.22\) and \(0.53\) f. The area under the \(z\) curve between \(-1\) and 1 \(\mathrm{g}\). The area under the \(z\) curve between \(-4\) and 4

Short Answer

Expert verified
a) The area under the z curve to the left of 1.75 is approximately 0.9599.\n b) The area under the z curve to the left of -0.68 is approximately 0.2483.\n c) The area under the z curve to the right of 1.20 is approximately 0.1151.\n d) The area under the z curve to the right of -2.82 is approximately 0.9974.\n e) The area under the z curve between -2.22 and 0.53 is approximately 0.8654.\n f) The area under the z curve between -1 and 1 is approximately 0.6826.\n g) The area under the z curve between -4 and 4 is approximately 1.

Step by step solution

01

Calculate the area to the left of a given z-value

To calculate the area under the curve to the left of a given z-value, simply look up the z-value in a standard normal (z) table. This directly gives the proportion of values to the left of the given z-value. For example, the area to the left of \(1.75\) is approximately \(0.9599\) or \(95.99\%\) of the total area under the curve.
02

Calculate the area to the right of a certain z-value

To calculate the area to the right of a certain z-score, subtract the table value associated with that z-score from 1. This is because the total area under the curve is 1, and the table gives the area to the left of the z-score. For example, the area to the right of \(1.20\) is \(1 - 0.8849 = 0.1151\) or \(11.51\%\).
03

Calculate the area between two given z-values

To calculate this area, find the area to the left of the higher z-value, and subtract the area to the left of the lower z-value from it. For instance, the area between \(-1\) and \(1\) is \(0.8413 - 0.1587 = 0.6826\) or \(68.26\%\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that the \(\mathrm{pH}\) of soil samples taken from a certain geographic region is normally distributed with a mean \(\mathrm{pH}\) of \(6.00\) and a standard deviation of \(0.10 .\) If the \(\mathrm{pH}\) of a randomly selected soil sample from this region is determined, answer the following questions about it: a. What is the probability that the resulting \(\mathrm{pH}\) is between \(5.90\) and \(6.15 ?\) b. What is the probability that the resulting \(\mathrm{pH}\) exceeds \(6.10 ?\) c. What is the probability that the resulting \(\mathrm{pH}\) is at most 5.95? d. What value will be exceeded by only \(5 \%\) of all such pH values?

Let \(z\) denote a random variable having a normal distribution with \(\mu=0\) and \(\sigma=1\). Determine each of the following probabilities: a. \(P(z<0.10)\) b. \(P(z<-0.10)\) c. \(P(0.40-1.25)\) g. \(P(z<-1.50\) or \(z>2.50)\)

Let \(x\) be the number of courses for which a randomly selected student at a certain university is registered. The probability distribution of \(x\) appears in the following table: $$ \begin{array}{lrrrrrrr} x & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ p(x) & .02 & .03 & .09 & .25 & .40 & .16 & .05 \end{array} $$ a. What is \(P(x=4)\) ? b. What is \(P(x \leq 4)\) ? c. What is the probability that the selected student is taking at most five courses? d. What is the probability that the selected student is taking at least five courses? more than five courses? e. Calculate \(P(3 \leq x \leq 6)\) and \(P(3

Flash bulbs manufactured by a certain company are sometimes defective. a. If \(5 \%\) of all such bulbs are defective, could the techniques of this section be used to approximate the probability that at least 5 of the bulbs in a random sample of size 50 are defective? If so, calculate this probability; if not, explain why not. b. Reconsider the question posed in Part (a) for the probability that at least 20 bulbs in a random sample of size 500 are defective.

Suppose that for a given computer salesperson, the probability distribution of \(x=\) the number of systems sold in one month is given by the following table: $$ \begin{array}{lrrrrrrrr} x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ p(x) & .05 & .10 & .12 & .30 & .30 & .11 & .01 & .01 \end{array} $$ a. Find the mean value of \(x\) (the mean number of systems sold). b. Find the variance and standard deviation of \(x\). How would you interpret these values? c. What is the probability that the number of systems sold is within 1 standard deviation of its mean value? d. What is the probability that the number of systems sold is more than 2 standard deviations from the mean?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free