Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the probability is \(.1\) that any given citrus tree will show measurable damage when the temperature falls to \(30^{\circ} \mathrm{F}\). If the temperature does drop to \(30^{\circ} \mathrm{F}\), what is the expected number of citrus trees showing damage in orchards of 2000 trees? What is the standard deviation of the number of trees that show damage?

Short Answer

Expert verified
The expected number of citrus trees showing damage is 200 and the standard deviation is approximately 13.42.

Step by step solution

01

Find the Expected Number

Use the formula for the expectation of a binomial random variable, which is \(E(X) = np\). Here, \(n = 2000\) (the number of trees) and \(p = .1\) (the probability that any given tree shows measurable damage). Substituting these values into the formula, you get \(E(X) = np = 2000 * .1 = 200\). So the expected number of trees showing damage is 200.
02

Find the Standard Deviation

Use the formula for the standard deviation of a binomial random variable, which is \(\sigma = \sqrt{np(1-p)}\). Here, \(n = 2000\), \(p = .1\), and \(1 - p = .9\). Substituting these values into the formula, you get \(\sigma = \sqrt{np(1-p)} = \sqrt{2000 * .1 * .9} = \sqrt{180} \approx 13.42\). So the standard deviation of the number of trees that show damage is approximately 13.42.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The Los Angeles Times (December 13,1992 ) reported that what airline passengers like to do most on long flights is rest or sleep; in a survey of 3697 passengers, almost \(80 \%\) did so. Suppose that for a particular route the actual percentage is exactly \(80 \%\), and consider randomly selecting six passengers. Then \(x\), the number among the selected six who rested or slept, is a binomial random variable with \(n=6\) and \(\pi=.8\). a. Calculate \(p(4)\), and interpret this probability. b. Calculate \(p(6)\), the probability that all six selected passengers rested or slept. c. Determine \(P(x \geq 4)\).

Consider the variable \(x=\) time required for a college student to complete a standardized exam. Suppose that for the population of students at a particular university, the distribution of \(x\) is well approximated by a normal curve with mean \(45 \mathrm{~min}\) and standard deviation \(5 \mathrm{~min}\). a. If \(50 \mathrm{~min}\) is allowed for the exam, what proportion of students at this university would be unable to finish in the allotted time? b. How much time should be allowed for the exam if we wanted \(90 \%\) of the students taking the test to be able to finish in the allotted time? c. How much time is required for the fastest \(25 \%\) of all students to complete the exam?

Suppose that \(20 \%\) of the 10,000 signatures on a certain recall petition are invalid. Would the number of invalid signatures in a sample of size 1000 have (approximately) a binomial distribution? Explain.

A soft-drink machine dispenses only regular Coke and Diet Coke. Sixty percent of all purchases from this machine are diet drinks. The machine currently has 10 cans of each type. If 15 customers want to purchase drinks before the machine is restocked, what is the probability that each of the 15 is able to purchase the type of drink desired? (Hint: Let \(x\) denote the number among the 15 who want a diet drink. For which possible values of \(x\) is everyone satisfied?)

In a study of warp breakage during the weaving of fabric (Technometrics [1982]: 63), 100 pieces of yarn were tested. The number of cycles of strain to breakage was recorded for each yarn sample. The resulting data are given in the following table: $$ \begin{array}{rrrrrrrrrr} 86 & 146 & 251 & 653 & 98 & 249 & 400 & 292 & 131 & 176 \\ 76 & 264 & 15 & 364 & 195 & 262 & 88 & 264 & 42 & 321 \\ 180 & 198 & 38 & 20 & 61 & 121 & 282 & 180 & 325 & 250 \\ 196 & 90 & 229 & 166 & 38 & 337 & 341 & 40 & 40 & 135 \\ 597 & 246 & 211 & 180 & 93 & 571 & 124 & 279 & 81 & 186 \\ 497 & 182 & 423 & 185 & 338 & 290 & 398 & 71 & 246 & 185 \\ 188 & 568 & 55 & 244 & 20 & 284 & 93 & 396 & 203 & 829 \\ 239 & 236 & 277 & 143 & 198 & 264 & 105 & 203 & 124 & 137 \\ 135 & 169 & 157 & 224 & 65 & 315 & 229 & 55 & 286 & 350 \\ 193 & 175 & 220 & 149 & 151 & 353 & 400 & 61 & 194 & 188 \end{array} $$ a. Construct a frequency distribution using the class intervals 0 to \(<100,100\) to \(<200\), and so on. b. Draw the histogram corresponding to the frequency distribution in Part (a). How would you describe the shape of this histogram? c. Find a transformation for these data that results in a more symmetric histogram than what you obtained in Part (b).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free