Chapter 7: Problem 44
Consider a game in which a red die and a blue die are rolled. Let \(x_{R}\) denote the value showing on the uppermost face of the red die, and define \(x_{B}\) similarly for the blue die. a. The probability distribution of \(x_{R}\) is $$ \begin{array}{lrrrrrr} x_{R} & 1 & 2 & 3 & 4 & 5 & 6 \\ p\left(x_{R}\right) & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \end{array} $$ Find the mean, variance, and standard deviation of \(x_{R}\). b. What are the values of the mean, variance, and standard deviation of \(x_{B} ?\) (You should be able to answer this question without doing any additional calculations.) c. Suppose that you are offered a choice of the following two games: Game 1: Costs $$\$ 7$$ to play, and you win \(y_{1}\) dollars, where \(y_{1}=x_{R}+x_{B}\) Game 2: Doesn't cost anything to play initially, but you "win" \(3 y_{2}\) dollars, where \(y_{2}=x_{R}-x_{B}\). If \(y_{2}\) is negative, you must pay that amount; if it is positive, you receive that amount. For Game 1, the net amount won in a game is \(w_{1}=\) \(y_{1}-7=x_{R}+x_{B}-7 .\) What are the mean and standard deviation of \(w_{1}\) ? d. For Game 2, the net amount won in a game is \(w_{2}=\) \(3 y_{2}=3\left(x_{R}-x_{B}\right) .\) What are the mean and standard deviation of \(w_{2}\) ? e. Based on your answers to Parts (c) and (d), if you had to play, which game would you choose and why?