Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The probability distribution of \(x\), the number of defective tires on a randomly selected automobile checked at a certain inspection station, is given in the following table: $$ \begin{array}{lrrrrr} x & 0 & 1 & 2 & 3 & 4 \\ p(x) & .54 & .16 & .06 & .04 & .20 \end{array} $$ a. Calculate the mean value of \(x\). b. What is the probability that \(x\) exceeds its mean value?

Short Answer

Expert verified
The mean value of \(x\) is 1.06 and the probability that \(x\) exceeds its mean value is 0.30.

Step by step solution

01

Calculate the mean value

The mean or expected value of a discrete random variable \(x\) can be calculated as the sum of the product of each outcome and its respective probability. This can be mathematically represented as \[E(x) = \sum x \cdot P(x)\] Using the given values, we have: \[E(x) = (0 * .54) + (1 * .16) + (2 * .06) + (3 * .04) + (4 * .20)\]
02

Calculate E(x)

On calculating the above equation, the mean or Expected value, \(E(x)\) is found to be 1.06.
03

Calculate P(x > E(x))

Now that we have the mean value, we can find the probability that \(x\) exceeds its mean value by summing up the probabilities of all outcomes greater than 1.06. Looking at the distribution, the outcomes greater than 1.06 are 2, 3 and 4. So, \[P(x > E(x)) = P(2) + P(3) + P(4) = .06 + .04 + .20\]
04

Calculate P(x > E(x))

Adding the respective probabilities, we find that the probability that \(x\) exceeds its mean value is 0.30.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that \(65 \%\) of all registered voters in a certain area favor a 7 -day waiting period before purchase of a handgun. Among 225 randomly selected voters, what is the probability that a. At least 150 favor such a waiting period? b. More than 150 favor such a waiting period? c. Fewer than 125 favor such a waiting period?

Airlines sometimes overbook flights. Suppose that for a plane with 100 seats, an airline takes 110 reservations. Define the variable \(x\) as the number of people who actually show up for a sold-out flight. From past experience, the probability distribution of \(x\) is given in the following table: $$ \begin{array}{lrrrrrrrr} x & 95 & 96 & 97 & 98 & 99 & 100 & 101 & 102 \\ p(x) & .05 & .10 & .12 & .14 & .24 & .17 & .06 & .04 \\ x & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 \\ p(x) & .03 & .02 & .01 & .005 & .005 & .005 & .0037 & .0013 \end{array} $$ a. What is the probability that the airline can accommodate everyone who shows up for the flight? b. What is the probability that not all passengers can be accommodated? c. If you are trying to get a seat on such a flight and you are number 1 on the standby list, what is the probability that you will be able to take the flight? What if you are number 3 ?

A grocery store has an express line for customers purchasing at most five items. Let \(x\) be the number of items purchased by a randomly selected customer using this line. Give examples of two different assignments of probabilities such that the resulting distributions have the same mean but quite different standard deviations.

Suppose that the distribution of net typing rate in words per minute (wpm) for experienced typists can be approximated by a normal curve with mean \(60 \mathrm{wpm}\) and standard deviation 15 wpm ("Effects of Age and Skill in Typing", Journal of Experimental Psychology [1984]: \(345-371\) ). a. What is the probability that a randomly selected typist's net rate is at most 60 wpm? less than 60 wpm? b. What is the probability that a randomly selected typist's net rate is between 45 and 90 wpm? c. Would you be surprised to find a typist in this population whose net rate exceeded 105 wpm? (Note: The largest net rate in a sample described in the paper is 104 wpm.) d. Suppose that two typists are independently selected. What is the probability that both their typing rates exceed 75 wpm? e. Suppose that special training is to be made available to the slowest \(20 \%\) of the typists. What typing speeds would qualify individuals for this training?

Suppose that fuel efficiency for a particular model car under specified conditions is normally distributed with a mean value of \(30.0 \mathrm{mpg}\) and a standard deviation of \(1.2 \mathrm{mpg}\). a. What is the probability that the fuel efficiency for a randomly selected car of this type is between 29 and \(31 \mathrm{mpg}\) ? b. Would it surprise you to find that the efficiency of a randomly selected car of this model is less than \(25 \mathrm{mpg}\) ? c. If three cars of this model are randomly selected, what is the probability that all three have efficiencies exceeding \(32 \mathrm{mpg}\) ? d. Find a number \(c\) such that \(95 \%\) of all cars of this model have efficiencies exceeding \(c\) (i.e., \(P(x>c)=.95\) ).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free