Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "Modeling Sediment and Water Column Interactions for Hydrophobic Pollutants" (Water Research [1984]: \(1169-1174\) ) suggests the uniform distribution on the interval from \(7.5\) to 20 as a model for \(x=\) depth (in centimeters) of the bioturbation layer in sediment for a certain region. a. Draw the density curve for \(x\). b. What is the height of the density curve? c. What is the probability that \(x\) is at most 12 ? d. What is the probability that \(x\) is between 10 and 15 ? Between 12 and 17 ? Why are these two probabilities equal?

Short Answer

Expert verified
The density curve is a rectangle with a constant height of 0.08. The probability that \(x\) is at most 12 is 0.36, and the probability that \(x\) falls between the intervals 10 and 15 and 12 and 17 is both 0.4 due to the property of uniform distribution.

Step by step solution

01

A. Drawing the density curve

Since \(x\) follows the uniform distribution on the interval \(7.5\) to \(20\), the density curve will be a rectangle with the base representing the interval \([7.5, 20]\) and the height corresponding to the constant probability density function \(f(x)\) over this interval.
02

B. Calculate the height of the density curve

The constant height of the density curve for a uniform distribution can be calculated by taking the reciprocal of the length of the interval. So for \(x\), the height \(h\) would be calculated as \(h = 1/(20-7.5) = 0.08\).
03

C. Calculate the probability that \(x\) is at most 12

For a uniform distribution, the probability that \(x\) is at most any value \(a\) within the interval can be calculated by finding the length of the interval from the lower bound to \(a\) and multiplying it by the constant height. Thus, the probability \(P(X \leq 12)\) is found by calculating \((12-7.5) * 0.08 = 0.36\).
04

D. Calculate the probability that \(x\) is between other intervals and explain equality

The probability that \(x\) is within any given interval can be calculated in the same fashion as before: by finding the length of the interval and multiplying it by the height of the density curve. Thus, \(P(10 \leq X \leq 15) = (15-10) * 0.08 = 0.4\) and \(P(12 \leq X \leq 17) = (17-12) * 0.08 = 0.4\). These two probabilities are equal because the length of the intervals is the same (5 units each) and the height of the density curve is constant. This demonstrates a property of the uniform distribution: equal-interval lengths have equal probabilities.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that \(65 \%\) of all registered voters in a certain area favor a 7 -day waiting period before purchase of a handgun. Among 225 randomly selected voters, what is the probability that a. At least 150 favor such a waiting period? b. More than 150 favor such a waiting period? c. Fewer than 125 favor such a waiting period?

A sporting goods store has a special sale on three brands of tennis balls - call them D, P, and W. Because the sale price is so low, only one can of balls will be sold to each customer. If \(40 \%\) of all customers buy Brand \(\mathrm{W}\), \(35 \%\) buy Brand \(\mathrm{P}\), and \(25 \%\) buy Brand \(\mathrm{D}\) and if \(x\) is the number among three randomly selected customers who buy Brand \(\mathrm{W}\), what is the probability distribution of \(x\) ?

The paper "Temperature and the Northern Distributions of Wintering Birds" (Ecology [1991]: 2274-2285) gave the following body masses (in grams) for 50 different bird species: $$ \begin{array}{rrrrrrrr} 7.7 & 10.1 & 21.6 & 8.6 & 12.0 & 11.4 & 16.6 & 9.4 \\ 11.5 & 9.0 & 8.2 & 20.2 & 48.5 & 21.6 & 26.1 & 6.2 \\ 19.1 & 21.0 & 28.1 & 10.6 & 31.6 & 6.7 & 5.0 & 68.8 \\ 23.9 & 19.8 & 20.1 & 6.0 & 99.6 & 19.8 & 16.5 & 9.0 \\ 448.0 & 21.3 & 17.4 & 36.9 & 34.0 & 41.0 & 15.9 & 12.5 \\ 10.2 & 31.0 & 21.5 & 11.9 & 32.5 & 9.8 & 93.9 & 10.9 \\ 19.6 & 14.5 & & & & & & \end{array} $$ a. Construct a stem-and-leaf display in which \(448.0\) is listed separately beside the display as an outlier on the high side, the stem of an observation is the tens digit, the leaf is the ones digit, and the tenths digit is suppressed (e.g., \(21.5\) has stem 2 and leaf 1 ). What do you perceive as the most prominent feature of the display? b. Draw a histogram based on class intervals 5 to \(<10,10\) to \(<15,15\) to \(<20,20\) to \(<25,25\) to \(<30,30\) to \(<40,40\) to \(<50,50\) to \(<100\), and 100 to \(<500\). Is a transformation of the data desirable? Explain. c. Use a calculator or statistical computer package to calculate logarithms of these observations, and construct a histogram. Is the log transformation successful in producing a more symmetric distribution? d. Consider transformed value \(=\frac{1}{\sqrt{\text { original value }}}\) and construct a histogram of the transformed data. Does it appear to resemble a normal curve?

Consider a large ferry that can accommodate cars and buses. The toll for cars is $$\$ 3$$, and the toll for buses is $$\$ 10 .$$ Let \(x\) and \(y\) denote the number of cars and buses, respectively, carried on a single trip. Cars and buses are accommodated on different levels of the ferry, so the number of buses accommodated on any trip is independent of the number of cars on the trip. Suppose that \(x\) and \(y\) have the following probability distributions: $$ \begin{array}{lrrrrrr} x & 0 & 1 & 2 & 3 & 4 & 5 \\ p(x) & .05 & .10 & .25 & .30 & .20 & .10 \\ y & 0 & 1 & 2 & & & \\ p(y) & .50 & .30 & .20 & & & \end{array} $$ a. Compute the mean and standard deviation of \(x\). b. Compute the mean and standard deviation of \(y\). c. Compute the mean and variance of the total amount of money collected in tolls from cars. d. Compute the mean and variance of the total amount of money collected in tolls from buses. e. Compute the mean and variance of \(z=\) total number of vehicles (cars and buses) on the ferry. f. Compute the mean and variance of \(w=\) total amount of money collected in tolls.

Suppose that \(25 \%\) of the fire alarms in a large city are false alarms. Let \(x\) denote the number of false alarms in a random sample of 100 alarms. Give approximations to the following probabilities: a. \(P(20 \leq x \leq 30)\) b. \(P(20

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free