Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that your statistics professor tells you that the scores on a midterm exam were approximately normally distributed with a mean of 78 and a standard deviation of 7 . The top \(15 \%\) of all scores have been designated A's. Your score is \(89 .\) Did you receive an A? Explain.

Short Answer

Expert verified
With the calculated Z-score of 1.57 for the grade and 1.04 being the minimum Z-score to qualify for the top 15%, the score of 89 is in the top 15% of the scores. So, yes, the score 89 is an A.

Step by step solution

01

Define the problem in terms of Z-scores

Let's convert our problem into a Z-score problem. Z-score is a measure that indicates how many standard deviations an element is from the mean. This can be calculated using the following formula: \( Z = (X - μ) / σ \)where:- X is the raw score- μ is the population mean- σ is the standard deviation of the population
02

Calculate the Z-score for the given grade

Now put the given values into the Z-score formula to figure out the Z-score for the given mark of 89.\( Z = (89 - 78) / 7 = 1.57 \)
03

Find the Z-score of the top 15%

Using a standard Z-table, or a calculator equipped with a normal distribution function, find the Z-score that corresponds to the area that represents the top 15% of all values. This is represented by 0.85 (or 85%) on the cumulative area (since the table represents the area from the left). The corresponding Z-score is approximately 1.04.
04

Compare the Z-scores

Compare the two Z-scores calculated in the previous steps. If the Z-score of the grade is greater than or equal to the Z-score representing the top 15%, then the grade is in the top 15% and therefore, is an A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two sisters, Allison and Teri, have agreed to meet between 1 and 6 P.M. on a particular day. In fact, Allison is equally likely to arrive at exactly 1 P.M., 2 P.M., 3 P.M., 4 P.M., 5 P.M., or 6 P.M. Teri is also equally likely to arrive at each of these six times, and Allison's and Teri's arrival times are independent of one another. Thus there are 36 equally likely (Allison, Teri) arrival-time pairs, for example, \((2,3)\) or \((6,1)\). Suppose that the first person to arrive waits until the second person arrives; let \(w\) be the amount of time the first person has to wait. a. What is the probability distribution of \(w\) ? b. How much time do you expect to elapse between the two arrivals?

Suppose that the distribution of net typing rate in words per minute (wpm) for experienced typists can be approximated by a normal curve with mean \(60 \mathrm{wpm}\) and standard deviation 15 wpm ("Effects of Age and Skill in Typing", Journal of Experimental Psychology [1984]: \(345-371\) ). a. What is the probability that a randomly selected typist's net rate is at most 60 wpm? less than 60 wpm? b. What is the probability that a randomly selected typist's net rate is between 45 and 90 wpm? c. Would you be surprised to find a typist in this population whose net rate exceeded 105 wpm? (Note: The largest net rate in a sample described in the paper is 104 wpm.) d. Suppose that two typists are independently selected. What is the probability that both their typing rates exceed 75 wpm? e. Suppose that special training is to be made available to the slowest \(20 \%\) of the typists. What typing speeds would qualify individuals for this training?

Suppose that a computer manufacturer receives computer boards in lots of five. Two boards are selected from each lot for inspection. We can represent possible outcomes of the selection process by pairs. For example, the pair \((1,2)\) represents the selection of Boards 1 and 2 for inspection. a. List the 10 different possible outcomes. b. Suppose that Boards 1 and 2 are the only defective boards in a lot of five. Two boards are to be chosen at random. Define \(x\) to be the number of defective boards observed among those inspected. Find the probability distribution of \(x\).

Determine the value \(z^{*}\) that a. Separates the largest \(3 \%\) of all \(z\) values from the others b. Separates the largest \(1 \%\) of all \(z\) values from the others c. Separates the smallest \(4 \%\) of all \(z\) values from the others d. Separates the smallest \(10 \%\) of all \(z\) values from the others

\A box contains five slips of paper, marked $$\$ 1$$, $$\$ 1$$, $$\$ 1$$, $$\$ 10$$, and $$\$ 25 .$$ The winner of a contest selects two slips of paper at random and then gets the larger of the dollar amounts on the two slips. Define a random variable \(w\) by \(w=\) amount awarded. Determine the probability distribution of \(w\). (Hint: Think of the slips as numbered \(1,2,3,4\), and 5 , so that an outcome of the experiment consists of two of these numbers.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free