Chapter 7: Problem 114
The longest "run" of \(S\) 's in the sequence SSFSSSSFFS has length 4 , corresponding to the \(S\) 's on the fourth, fifth, sixth, and seventh trials. Consider a binomial experiment with \(n=4\), and let \(y\) be the length (number of trials) in the longest run of \(S\) 's. a. When \(\pi=.5\), the 16 possible outcomes are equally likely. Determine the probability distribution of \(y\) in this case (first list all outcomes and the \(y\) value for each one). Then calculate \(\mu_{y}\) b. Repeat Part (a) for the case \(\pi=.6\). c. Let \(z\) denote the longest run of either \(S\) 's or \(F\) 's. Determine the probability distribution of \(z\) when \(\pi=.5\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.