Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Wall Street Journal (February 15,1972 ) reported that General Electric was sued in Texas for sex discrimination over a minimum height requirement of \(5 \mathrm{ft}\) 7 in. The suit claimed that this restriction eliminated more than \(94 \%\) of adult females from consideration. Let \(x\) represent the height of a randomly selected adult woman. Suppose that \(x\) is approximately normally distributed with mean 66 in. (5 ft 6 in.) and standard deviation 2 in. a. Is the claim that \(94 \%\) of all women are shorter than \(5 \mathrm{ft}\) 7 in. correct? b. What proportion of adult women would be excluded from employment as a result of the height restriction?

Short Answer

Expert verified
The claim that 94% of all women are shorter than 5 ft. 7 in. is incorrect. Only approximately 69.15% of women are shorter than that. Also, approximately 69.15% of women would be excluded from employment due to the height restriction of 5 ft. 7 in.

Step by step solution

01

Analyze the Claim

First, you must calculate the Z-score to understand where a height of 5 ft. 7 in. stands within the given distribution. 5 ft. 7 in. is equal to 67 inches. The Z-score is defined by the formula: \(Z = \frac{x - \mu}{\sigma}\). Where \(x\) is the observation (67 inches in this case), \(\mu\) is the mean (66 inches), and \(\sigma\) is the standard deviation (2 inches). So the Z-score for 67 inches is \(Z = \frac{67 - 66}{2}\) which equals to 0.5.
02

Validate the Claim by finding the proportion

Now we need to verify the claim that more than 94% of adult women are shorter than 5 ft. 7 in. This can be done by finding the area to the left of the Z-score in a standard Normal Distribution. Area to the left denotes the proportion of the population that is less than the specific value. The value corresponding to Z=0.5 in standard Normal Distribution tables or using technology comes out to be 0.6915 or 69.15%. This shows that only about 69.15% women are shorter than 5 ft. 7 in. Thus the claim is incorrect.
03

Find the proportion of women excluded due to height restriction

The proportion of adult women that would be excluded from employment due to the height restriction is simply the area to the left of the Z-score (0.5) in a standard Normal Distribution, which we found to be 0.6915 or 69.15%. This means that approximately 69.15% of women would be excluded due to the height restriction of 5 ft. 7 in.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(x\) denote the IQ for an individual selected at random from a certain population. The value of \(x\) must be a whole number. Suppose that the distribution of \(x\) can be approximated by a normal distribution with mean value 100 and standard deviation 15 . Approximate the following probabilities: a. \(P(x=100)\) b. \(P(x \leq 110)\) c. \(P(x<110)\) (Hint: \(x<110\) is the same as \(x \leq 109 .\) ) d. \(P(75 \leq x \leq 125)\)

A coin is spun 25 times. Let \(x\) be the number of spins that result in heads (H). Consider the following rule for deciding whether or not the coin is fair: Judge the coin fair if \(8 \leq x \leq 17\). Judge the coin biased if either \(x \leq 7\) or \(x \geq 18\). a. What is the probability of judging the coin biased when it is actually fair? b. What is the probability of judging the coin fair when \(P(\mathrm{H})=.9\), so that there is a substantial bias? Repeat for \(P(\mathrm{H})=.1 .\) c. What is the probability of judging the coin fair when \(P(\mathrm{H})=.6\) ? when \(P(\mathrm{H})=.4 ?\) Why are the probabilities so large compared to the probabilities in Part (b)? d. What happens to the "error probabilities" of Parts (a) and (b) if the decision rule is changed so that the coin is judged fair if \(7 \leq x \leq 18\) and unfair otherwise? Is this a better rule than the one first proposed? Explain.

Suppose that \(20 \%\) of the 10,000 signatures on a certain recall petition are invalid. Would the number of invalid signatures in a sample of size 1000 have (approximately) a binomial distribution? Explain.

\A box contains five slips of paper, marked $$\$ 1$$, $$\$ 1$$, $$\$ 1$$, $$\$ 10$$, and $$\$ 25 .$$ The winner of a contest selects two slips of paper at random and then gets the larger of the dollar amounts on the two slips. Define a random variable \(w\) by \(w=\) amount awarded. Determine the probability distribution of \(w\). (Hint: Think of the slips as numbered \(1,2,3,4\), and 5 , so that an outcome of the experiment consists of two of these numbers.)

Consider a game in which a red die and a blue die are rolled. Let \(x_{R}\) denote the value showing on the uppermost face of the red die, and define \(x_{B}\) similarly for the blue die. a. The probability distribution of \(x_{R}\) is $$ \begin{array}{lrrrrrr} x_{R} & 1 & 2 & 3 & 4 & 5 & 6 \\ p\left(x_{R}\right) & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \end{array} $$ Find the mean, variance, and standard deviation of \(x_{R}\). b. What are the values of the mean, variance, and standard deviation of \(x_{B} ?\) (You should be able to answer this question without doing any additional calculations.) c. Suppose that you are offered a choice of the following two games: Game 1: Costs $$\$ 7$$ to play, and you win \(y_{1}\) dollars, where \(y_{1}=x_{R}+x_{B}\) Game 2: Doesn't cost anything to play initially, but you "win" \(3 y_{2}\) dollars, where \(y_{2}=x_{R}-x_{B}\). If \(y_{2}\) is negative, you must pay that amount; if it is positive, you receive that amount. For Game 1, the net amount won in a game is \(w_{1}=\) \(y_{1}-7=x_{R}+x_{B}-7 .\) What are the mean and standard deviation of \(w_{1}\) ? d. For Game 2, the net amount won in a game is \(w_{2}=\) \(3 y_{2}=3\left(x_{R}-x_{B}\right) .\) What are the mean and standard deviation of \(w_{2}\) ? e. Based on your answers to Parts (c) and (d), if you had to play, which game would you choose and why?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free