Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A soft-drink machine dispenses only regular Coke and Diet Coke. Sixty percent of all purchases from this machine are diet drinks. The machine currently has 10 cans of each type. If 15 customers want to purchase drinks before the machine is restocked, what is the probability that each of the 15 is able to purchase the type of drink desired? (Hint: Let \(x\) denote the number among the 15 who want a diet drink. For which possible values of \(x\) is everyone satisfied?)

Short Answer

Expert verified
The total probability can be calculated by summing up the binomial probabilities for each possible value of \(x\) from 0 to 10, using a binomial probability formula. The specific answer depends on the calculated values.

Step by step solution

01

Identify the possible values for x

Given that the machine has 10 cans of each type of drink, in order for all customers to get their desired drink, the possible values of \(x\) (those who want diet drink) can range from 0 to 10.
02

Calculate binomial probabilities for each possible value of x

We need to calculate the binomial probabilities for the range of \(x\) using the formula for binomial distribution: \[ P(x) = \binom{n}{x} *(p^x) * ((1-p)^{n-x}) \] where n is the total number of trials (15 in this case), \(x\) is the number of successes, and \(p\) is the probability of success on any given trial (0.6 for diet drink in this case).
03

Calculate the total probability

Now, by adding up the calculated probabilities for each possible value of \(x\) from 0 to 10, we can obtain the total probability that each customer is able to purchase the type of drink desired.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(x\) denote the duration of a randomly selected pregnancy (the time elapsed between conception and birth). Accepted values for the mean value and standard deviation of \(x\) are 266 days and 16 days, respectively. Suppose that the probability distribution of \(x\) is (approximately) normal. a. What is the probability that the duration of pregnancy is between 250 and 300 days? b. What is the probability that the duration of pregnancy is at most 240 days? c. What is the probability that the duration of pregnancy is within 16 days of the mean duration? d. A "Dear Abby" column dated January 20,1973, contained a letter from a woman who stated that the duration of her pregnancy was exactly 310 days. (She wrote that the last visit with her husband, who was in the navy, occurred 310 days before birth.) What is the probability that the duration of pregnancy is at least 310 days? Does this probability make you a bit skeptical of the claim? e. Some insurance companies will pay the medical expenses associated with childbirth only if the insurance has been in effect for more than 9 months ( 275 days). This restriction is designed to ensure that the insurance company pays benefits for only those pregnancies for which conception occurred during coverage. Suppose that conception occurred 2 weeks after coverage began. What is the probability that the insurance company will refuse to pay benefits because of the 275 -day insurance requirement?

State whether each of the following random variables is discrete or continuous: a. The number of defective tires on a car b. The body temperature of a hospital patient c. The number of pages in a book d. The number of draws (with replacement) from a deck of cards until a heart is selected e. The lifetime of a lightbulb

A coin is spun 25 times. Let \(x\) be the number of spins that result in heads (H). Consider the following rule for deciding whether or not the coin is fair: Judge the coin fair if \(8 \leq x \leq 17\). Judge the coin biased if either \(x \leq 7\) or \(x \geq 18\). a. What is the probability of judging the coin biased when it is actually fair? b. What is the probability of judging the coin fair when \(P(\mathrm{H})=.9\), so that there is a substantial bias? Repeat for \(P(\mathrm{H})=.1 .\) c. What is the probability of judging the coin fair when \(P(\mathrm{H})=.6\) ? when \(P(\mathrm{H})=.4 ?\) Why are the probabilities so large compared to the probabilities in Part (b)? d. What happens to the "error probabilities" of Parts (a) and (b) if the decision rule is changed so that the coin is judged fair if \(7 \leq x \leq 18\) and unfair otherwise? Is this a better rule than the one first proposed? Explain.

Suppose that \(20 \%\) of all homeowners in an earthquake-prone area of California are insured against earthquake damage. Four homeowners are selected at random; let \(x\) denote the number among the four who have earthquake insurance. a. Find the probability distribution of \(x\). (Hint: Let \(S\) denote a homeowner who has insurance and \(\mathrm{F}\) one who does not. Then one possible outcome is SFSS, with probability \((.2)(.8)(.2)(.2)\) and associated \(x\) value of \(3 .\) There are 15 other outcomes.) b. What is the most likely value of \(x\) ? c. What is the probability that at least two of the four selected homeowners have earthquake insurance?

Suppose that \(20 \%\) of the 10,000 signatures on a certain recall petition are invalid. Would the number of invalid signatures in a sample of size 1000 have (approximately) a binomial distribution? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free