Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A restaurant has four bottles of a certain wine in stock. Unbeknownst to the wine steward, two of these bottles (Bottles 1 and 2 ) are bad. Suppose that two bottles are ordered, and let \(x\) be the number of good bottles among these two. a. One possible experimental outcome is \((1,2)\) (Bottles 1 and 2 are the ones selected) and another is \((2,4)\). List all possible outcomes. b. Assuming that the two bottles are randomly selected from among the four, what is the probability of each outcome in Part (a)? c. The value of \(x\) for the \((1,2)\) outcome is 0 (neither selected bottle is good), and \(x=1\) for the outcome \((2,4)\). Determine the \(x\) value for each possible outcome. Then use the probabilities in Part (b) to determine the probability distribution of \(x\).

Short Answer

Expert verified
Possible outcomes are: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), each with a probability of \(\frac{1}{6}\). The probability distribution of \(x\) (number of good bottles among the selected) is: P(\(x = 0\)) = \(\frac{1}{6}\), P(\(x = 1\)) = \(\frac{4}{6}\), P(\(x = 2\)) = \(\frac{1}{6}\).

Step by step solution

01

Identification of all possible outcomes

Using combinations, we can list all possible outcomes when two bottles are selected out of four. We denote the bottles as 1, 2, 3, and 4, where 1 and 2 are bad bottles and 3 and 4 are good bottles. The possible outcomes are: (1,2), (1,3), (1,4), (2,3), (2,4), and (3,4).
02

Calculation of the probability of each outcome

Since the bottles are randomly selected, each pair of bottles has an equal chance of being selected. The total number of combinations of 4 items taken 2 at a time is \( \binom{4}{2} = 6\). So, the probability of each outcome is \(\frac{1}{6}\).
03

Determination of the x value for each possible outcome

We let \(x\) be the number of good bottles among the selected two. Thus, \(x = 0\) for outcome (1,2); \(x = 1\) for outcomes (1,3), (1,4), (2,3), and (2,4); and \(x = 2\) for outcome (3,4).
04

Establish the probability distribution of x

Based on the above steps, we already know the outcome for each value of \(x\) and the corresponding probabilities. We can present this in a tabular probability distribution: For \(x = 0\) there is 1 outcome, (1,2), so the probability is \(\frac{1}{6}\); for \(x = 1\) there are 4 outcomes, so the probability is \(\frac{4}{6}\); for \(x = 2\) there is 1 outcome, (3,4), so the probability is \(\frac{1}{6}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The amount of time spent by a statistical consultant with a client at their first meeting is a random variable having a normal distribution with a mean value of \(60 \mathrm{~min}\) and a standard deviation of \(10 \mathrm{~min}\). a. What is the probability that more than \(45 \mathrm{~min}\) is spent at the first meeting? b. What amount of time is exceeded by only \(10 \%\) of all clients at a first meeting? c. If the consultant assesses a fixed charge of \(\$ 10\) (for overhead) and then charges \(\$ 50\) per hour, what is the mean revenue from a client's first meeting?

Twenty-five percent of the customers entering a grocery store between 5 P.M. and 7 P.M. use an express checkout. Consider five randomly selected customers, and let \(x\) denote the number among the five who use the express checkout. a. What is \(p(2)\), that is, \(P(x=2)\) ? b. What is \(P(x \leq 1)\) ? c. What is \(P(2 \leq x)\) ? (Hint: Make use of your computation in Part (b).) d. What is \(P(x \neq 2) ?\)

Let \(z\) denote a variable that has a standard normal distribution. Determine the value \(z^{*}\) to satisfy the following conditions: a. \(P\left(zz^{*}\right)=.02\) e. \(P\left(z>z^{*}\right)=.01\) f. \(P\left(z>z^{*}\right.\) or \(\left.z<-z^{*}\right)=.20\)

Suppose that the distribution of net typing rate in words per minute (wpm) for experienced typists can be approximated by a normal curve with mean \(60 \mathrm{wpm}\) and standard deviation 15 wpm ("Effects of Age and Skill in Typing", Journal of Experimental Psychology [1984]: \(345-371\) ). a. What is the probability that a randomly selected typist's net rate is at most 60 wpm? less than 60 wpm? b. What is the probability that a randomly selected typist's net rate is between 45 and 90 wpm? c. Would you be surprised to find a typist in this population whose net rate exceeded 105 wpm? (Note: The largest net rate in a sample described in the paper is 104 wpm.) d. Suppose that two typists are independently selected. What is the probability that both their typing rates exceed 75 wpm? e. Suppose that special training is to be made available to the slowest \(20 \%\) of the typists. What typing speeds would qualify individuals for this training?

An author has written a book and submitted it to a publisher. The publisher offers to print the book and gives the author the choice between a flat payment of $$\$ 10,000$$ and a royalty plan. Under the royalty plan the author would receive $$\$ 1$$ for each copy of the book sold. The author thinks that the following table gives the probability distribution of the variable \(x=\) the number of books that will be sold: $$ \begin{array}{lrrrr} x & 1000 & 5000 & 10,000 & 20,000 \\ p(x) & .05 & .30 & .40 & .25 \end{array} $$ Which payment plan should the author choose? Why?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free