Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A theater complex is currently showing four R-rated movies, three \(\mathrm{PG}-13\) movies, two \(\mathrm{PG}\) movies, and one \(\mathrm{G}\) movie. The following table gives the number of people at the first showing of each movie on a certain Saturday: $$ \begin{array}{rlc} \text { Theater } & \text { Rating } & \begin{array}{l} \text { Number of } \\ \text { Viewers } \end{array} \\ \hline 1 & \mathrm{R} & 600 \\ 2 & \mathrm{PG}-13 & 420 \\ 3 & \mathrm{PG}-13 & 323 \\ 4 & \mathrm{R} & 196 \\ 5 & \mathrm{G} & 254 \\ 6 & \mathrm{PG} & 179 \\ 7 & \mathrm{PG}-13 & 114 \\ 8 & \mathrm{R} & 205 \\ 9 & \mathrm{R} & 139 \\ 10 & \mathrm{PG} & 87 \\ \hline \end{array} $$Suppose that a single one of these viewers is randomly selected. a. What is the probability that the selected individual saw a PG movie? b. What is the probability that the selected individual saw a PG or a PG-13 movie? c. What is the probability that the selected individual did not see an R movie?

Short Answer

Expert verified
a. The probability that a viewer watched a PG movie is approximately 0.066. b. The probability that a viewer watched a PG or PG-13 movie is approximately 0.332. c. The probability that a viewer did not watch an R-rated movie is approximately 0.556.

Step by step solution

01

Step 1.

First, calculate the total number of viewers by adding up all the viewers from each theater. This will give us the total possible outcomes.
02

Step 2.

Calculate the total number of viewers for each movie rating. For example, for the PG movie rating, sum up the viewers from Theater 6 and Theater 10. This will give the number of outcomes of a viewer selected at random having watched a PG movie.
03

Step 3.

To determine probability, divide the number of viewers for a certain movie rating (desired outcomes) by total number of viewers (total outcomes). For part a, divide the number of viewers for PG movies by the total number of viewers.
04

Step 4.

Repeat the calculations for each part of the problem: calculate the total viewers for PG and PG-13 movies, then divide by the total viewers for part b; calculate the total viewers for all non-R movies, then divide by the total viewers for part c.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An article in the New York Times (March 2, 1994) reported that people who suffer cardiac arrest in New York City have only a 1 in 100 chance of survival. Using probability notation, an equivalent statement would be \(P\) (survival \()=.01\) for people who suffer a cardiac arrest in New York City. (The article attributed this poor survival rate to factors common in large cities: traffic congestion and the difficulty of finding victims in large buildings.) a. Give a relative frequency interpretation of the given probability. b. The research that was the basis for the New York Times article was a study of 2329 consecutive cardiac arrests in New York City. To justify the " 1 in 100 chance of survival" statement, how many of the 2329 cardiac arrest sufferers do you think survived? Explain.

The student council for a school of science and math has one representative from each of the five academic departments: biology (B), chemistry (C), mathematics (M), physics (P), and statistics (S). Two of these students are to be randomly selected for inclusion on a university-wide student committee (by placing five slips of paper in a bowl, mixing, and drawing out two of them). a. What are the 10 possible outcomes (simple events)? b. From the description of the selection process, all outcomes are equally likely; what is the probability of each simple event? c. What is the probability that one of the committee members is the statistics department representative? d. What is the probability that both committee members come from laboratory science departments?

The article "Men, Women at Odds on Gun Control" (Cedar Rapids Gazette, September 8,1999 ) included the following statement: ' The survey found that 56 percent of American adults favored stricter gun control laws. Sixtysix percent of women favored the tougher laws, compared with 45 percent of men." These figures are based on a large telephone survey conducted by Associated Press Polls. If an adult is selected at random, are the events selected adult is female and selected adult favors stricter gun control independent or dependent events? Explain.

Suppose that, starting at a certain time, batteries coming off an assembly line are examined one by one to see whether they are defective (let \(\mathrm{D}=\) defective and \(\mathrm{N}=\) not defective). The chance experiment terminates as soon as a nondefective battery is obtained. a. Give five possible experimental outcomes. b. What can be said about the number of outcomes in the sample space? c. What outcomes are in the event \(E\), that the number of batteries examined is an even number?

A medical research team wishes to evaluate two different treatments for a disease. Subjects are selected two at a time, and then one of the pair is assigned to each of the two treatments. The treatments are applied, and each is either a success (S) or a failure (F). The researchers keep track of the total number of successes for each treatment. They plan to continue the chance experiment until the number of successes for one treatment exceeds the number of successes for the other treatment by \(2 .\) For example, they might observe the results in the table below. The chance experiment would stop after the sixth pair, because Treatment 1 has 2 more successes than Treatment \(2 .\) The researchers would conclude that Treatment 1 is preferable to Treatment \(2 .\) Suppose that Treatment 1 has a success rate of \(.7\) (i.e., \(P(\) success \()=.7\) for Treatment 1 ) and that Treatment 2 has a success rate of \(.4\). Use simulation to estimate the probabilities in Parts (a) and (b). (Hint: Use a pair of random digits to simulate one pair of subjects. Let the first digit represent Treatment 1 and use \(1-7\) as an indication of a

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free