Chapter 6: Problem 92
The general addition rule for three events states that $$ \begin{aligned} P(A \text { or } B \text { or } C)=& P(A)+P(B)+P(C) \\ &-P(A \text { and } B)-P(A \text { and } C) \\ &-P(B \text { and } C)+P(A \text { and } B \text { and } C) \end{aligned} $$ A new magazine publishes columns entitled "Art" (A), "Books" (B), and "Cinema" (C). Suppose that \(14 \%\) of all subscribers read A, \(23 \%\) read \(\mathrm{B}, 37 \%\) read \(\mathrm{C}, 8 \%\) read \(\mathrm{A}\) and \(\mathrm{B}, 9 \%\) read \(\mathrm{A}\) and \(\mathrm{C}, 13 \%\) read \(\mathrm{B}\) and \(\mathrm{C}\), and \(5 \%\) read all three columns. What is the probability that a randomly selected subscriber reads at least one of these three columns?