Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A single-elimination tournament with four players is to be held. In Game 1 , the players seeded (rated) first and fourth play. In Game 2, the players seeded second and third play. In Game 3 , the winners of Games 1 and 2 play, with the winner of Game 3 declared the tournament winner. Suppose that the following probabilities are given: \(P(\) seed 1 defeats seed 4\()=.8\) \(P(\) seed 1 defeats seed 2\()=.6\) \(P(\) seed 1 defeats seed 3\()=.7\) \(P(\) seed 2 defeats seed 3\()=.6\) \(P(\) seed 2 defeats seed 4\()=.7\) \(P(\) seed 3 defeats seed 4\()=.6\) a. Describe how you would use a selection of random digits to simulate Game 1 of this tournament. b. Describe how you would use a selection of random digits to simulate Game 2 of this tournament. c. How would you use a selection of random digits to simulate Game 3 in the tournament? (This will depend on the outcomes of Games 1 and 2.) d. Simulate one complete tournament, giving an explanation for each step in the process. e. Simulate 10 tournaments, and use the resulting information to estimate the probability that the first seed wins the tournament. f. Ask four classmates for their simulation results. Along with your own results, this should give you information on 50 simulated tournaments. Use this information to estimate the probability that the first seed wins the tournament. g. Why do the estimated probabilities from Parts (e) and (f) differ? Which do you think is a better estimate of the true probability? Explain.

Short Answer

Expert verified
The victory probability of seed 1 in both the 10-tournament and 50-tournament simulations will heavily rely on the simulation experiments.

Step by step solution

01

Game Simulation

For each game, generate a random digit between 0 and 9. If the digit is less than the given probability multiplied by 10, then the higher seed wins. For instance, for Game 1 between seed 1 and seed 4, if the random number is less than 8 (because \(P(\) seed 1 defeats seed 4\()=.8\)), then seed 1 wins.
02

Tournament Simulation

Utilize the game simulation method for Games 1 and 2. For Game 3, the simulation will be conditional on the winners of the first two games. If seed 1 is among the winners, use the probability that seed 1 will defeat the other winner for simulation. If not, between seed 2 and seed 3, whoever is a winner, use the respective probability for simulation.
03

10 Tournaments Simulation

Repeat the 'Tournament Simulation' procedure 10 times. Count the number of times the first seed wins. The frequency of seed one's victory divided by 10 gives the estimated probability of victory for seed 1.
04

50 Tournaments Simulation

Similar to the '10 Tournaments Simulation', conduct it 50 times using data from classmates. Compute the estimated winning probability for seed 1 by dividing the number of seed 1's victories by 50.
05

Comparing Probabilities

The estimated probabilities from parts '10 Tournaments Simulation' and '50 Tournaments Simulation' may vary because of the variability inherent in random experiments. With an increase in trials (such as from 10 to 50 tournaments), the estimate will be more reliable. Therefore, the estimate from the '50 Tournaments Simulation' should be a better estimate of the true probability.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "SUVs Score Low in New Federal Rollover Ratings" (San Luis Obispo Tribune, January 6,2001 ) gave information on death rates for various kinds of accidents by vehicle type for accidents reported to the police. Suppose that we randomly select an accident reported to the police and consider the following events: \(R=\) event that the selected accident is a single-vehicle rollover, \(F=\) event that the selected accident is a frontal collision, and \(D=\) event that the selected accident results in a death. Information in the article indicates that the following probability estimates are reasonable: \(P(R)=.06, P(F)=.60\), \(P(R \mid D)=.30, P(F \mid D)=.54\).

Suppose that a six-sided die is "loaded" so that any particular even-numbered face is twice as likely to be observed as any particular odd-numbered face. a. What are the probabilities of the six simple events? (Hint: Denote these events by \(O_{1}, \ldots, O_{6}\). Then \(P\left(O_{1}\right)=p\), \(P\left(O_{2}\right)=2 p, P\left(O_{3}\right)=p, \ldots, P\left(O_{6}\right)=2 p .\) Now use a condi- tion on the sum of these probabilities to determine \(p .\) ) b. What is the probability that the number showing is an odd number? at most \(3 ?\) c. Now suppose that the die is loaded so that the probability of any particular simple event is proportional to the number showing on the corresponding upturned face; that is, \(P\left(O_{1}\right)=c, P\left(O_{2}\right)=2 c, \ldots, P\left(O_{6}\right)=6 c .\) What are the probabilities of the six simple events? Calculate the probabilities of Part (b) for this die.

Refer to the following information on births in the United States over a given period of time: $$ \begin{array}{lr} \text { Type of Birth } & \text { Number of Births } \\ \hline \text { Single birth } & 41,500,000 \\ \text { Twins } & 500,000 \\ \text { Triplets } & 5000 \\ \text { Quadruplets } & 100 \\ & \\ \hline \end{array} $$ Use this information to approximate the probability that a randomly selected pregnant woman who reaches full term a. Delivers twins b. Delivers quadruplets c. Gives birth to more than a single child

In a school machine shop, \(60 \%\) of all machine breakdowns occur on lathes and \(15 \%\) occur on drill presses. Let \(E\) denote the event that the next machine breakdown is on a lathe, and let \(F\) denote the event that a drill press is the next machine to break down. With \(P(E)=.60\) and \(P(F)=.15\), calculate: a. \(P\left(E^{C}\right)\) b. \(P(E \cup F)\) c. \(P\left(E^{C} \cap F^{C}\right)\)

Four students must work together on a group project. They decide that each will take responsibility for a particular part of the project, as follows: Because of the way the tasks have been divided, one student must finish before the next student can begin work. To ensure that the project is completed on time, a schedule is established, with a deadline for each team member. If any one of the team members is late, the timely completion of the project is jeopardized. Assume the following probabilities: 1\. The probability that Maria completes her part on time is \(.8\). 2\. If Maria completes her part on time, the probability that Alex completes on time is \(.9\), but if Maria is late, the probability that Alex completes on time is only . 6 . 3\. If Alex completes his part on time, the probability that Juan completes on time is \(.8\), but if Alex is late, the probability that Juan completes on time is only .5. 4\. If Juan completes his part on time, the probability that Jacob completes on time is \(.9\), but if Juan is late, the probability that Jacob completes on time is only \(.7 .\) Use simulation (with at least 20 trials) to estimate the probability that the project is completed on time. Think carefully about this one. For example, you might use a random digit to represent each part of the project (four in all). For the first digit (Maria's part), \(1-8\) could represent on time and 9 and 0 could represent late. Depending on what happened with Maria (late or on time), you would then look at the digit representing Alex's part. If Maria was on time, \(1-9\) would represent on time for Alex, but if Maria was late, only \(1-6\) would represent on time. The parts for Juan and Jacob could be handled similarly.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free