Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Many cities regulate the number of taxi licenses, and there is a great deal of competition for both new and existing licenses. Suppose that a city has decided to sell 10 new licenses for \(\$ 25,000\) each. A lottery will be held to determine who gets the licenses, and no one may request more than three licenses. Twenty individuals and taxi companies have entered the lottery. Six of the 20 entries are requests for 3 licenses, 9 are requests for 2 licenses, and the rest are requests for a single license. The city will select requests at random, filling as many of the requests as possible. For example, the city might fill requests for \(2,3,1\), and 3 licenses and then select a request for \(3 .\) Because there is only one license left, the last request selected would receive a license, but only one. a. An individual has put in a request for a single license. Use simulation to approximate the probability that the request will be granted. Perform at least 20 simulated lotteries (more is better!). b. Do you think that this is a fair way of distributing licenses? Can you propose an alternative procedure for distribution?

Short Answer

Expert verified
The solution requires the execution of simulation process to determine the probability of an individual obtaining a license. The fairness and alternative method of distribution is subjective and depends on personal interpretation of the situation.

Step by step solution

01

- Analyzing the request demands

First, you need to understand the demand for licenses. Among the 20 requests, 6 are for 3 licenses, 9 are for 2 licenses and the remaining (20-6-9=5) are for 1 license. This means there are a total of 6*3 + 9*2 + 5*1 = 35 requested licenses.
02

- Simulating the lottery

The city has only 10 licenses available. To simulate the lottery, you must randomly choose requests (without replacement) and give them licenses until all 10 are given. Note that a request can only receive the number of licenses they asked for or the remaining licenses, whichever is smaller.
03

- Counting successful requests

After each simulation, record if the individual with a request for a single license got his license or not. A 'success' indicates that the individual received a license.
04

- Estimating the probability

After completing at least 20 simulations, the approximate probability of the individual receiving a license can be estimated as the number of successful simulations divided by the total number of simulations.
05

- Discussing Fairness

The fairness of this method of distribution can be discussed by considering if this method is unbiased and if it equally considers the needs of all participants. It depends on personal understanding and interpretation.
06

- Suggesting an alternative

A possible alternative procedure for distribution can be proposed based on understanding of fairness and effectiveness of distribution. For instance, it might be fairer to distribute the licenses in such a way that it considers the number of licenses requested by each individual/company and the total number of requests.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A certain university has 10 vehicles available for use by faculty and staff. Six of these are vans and four are cars. On a particular day, only two requests for vehicles have been made. Suppose that the two vehicles to be assigned are chosen in a completely random fashion from among the 10 . a. Let \(E\) denote the event that the first vehicle assigned is a van. What is \(P(E)\) ? b. Let \(F\) denote the probability that the second vehicle assigned is a van. What is \(P(F \mid E)\) ? c. Use the results of Parts (a) and (b) to calculate \(P(E\) and \(F)\) (Hint: Use the definition of \(P(F \mid E) .)\)

The National Public Radio show Car Talk has a feature called "The Puzzler." Listeners are asked to send in answers to some puzzling questions-usually about cars but sometimes about probability (which, of course, must account for the incredible popularity of the program!). Suppose that for a car question, 800 answers are submitted, of which 50 are correct. Suppose also that the hosts randomly select two answers from those submitted with replacement. a. Calculate the probability that both selected answers are correct. (For purposes of this problem, keep at least five digits to the right of the decimal.) b. Suppose now that the hosts select the answers at random but without replacement. Use conditional probability to evaluate the probability that both answers selected are correct. How does this probability compare to the one computed in Part (a)?

There are two traffic lights on the route used by a certain individual to go from home to work. Let \(E\) denote the event that the individual must stop at the first light, and define the event \(F\) in a similar manner for the second light. Suppose that \(P(E)=.4, P(F)=.3\) and \(P(E \cap F)=.15\) a. What is the probability that the individual must stop at at least one light; that is, what is the probability of the event \(E \cup F ?\) b. What is the probability that the individual needn't stop at either light? c. What is the probability that the individual must stop at exactly one of the two lights? d. What is the probability that the individual must stop just at the first light? (Hint: How is the probability of this event related to \(P(E)\) and \(P(E \cap F) ?\) A Venn diagram might help.)

The article "Checks Halt over 200,000 Gun Sales" (San Luis Obispo Tribune, June 5,2000 ) reported that required background checks blocked 204,000 gun sales in 1999\. The article also indicated that state and local police reject a higher percentage of would-be gun buyers than does the FBI, stating, "The FBI performed \(4.5\) million of the \(8.6\) million checks, compared with \(4.1\) million by state and local agencies. The rejection rate among state and local agencies was 3 percent, compared with \(1.8\) percent for the FBI" a. Use the given information to estimate \(P(F), P(S)\), \(P(R \mid F)\), and \(P(R \mid S)\), where \(F=\) event that a randomly selected gun purchase background check is performed by the FBI, \(S=\) event that a randomly selected gun purchase background check is performed by a state or local agency, and \(R=\) event that a randomly selected gun purchase background check results in a blocked sale. b. Use the probabilities from Part (a) to evaluate \(P(S \mid R)\), and write a sentence interpreting this value in the context of this problem.

Only \(0.1 \%\) of the individuals in a certain population have a particular disease (an incidence rate of .001). Of those who have the disease, \(95 \%\) test positive when a certain diagnostic test is applied. Of those who do not have the disease, \(90 \%\) test negative when the test is applied. Suppose that an individual from this population is randomly selected and given the test. a. Construct a tree diagram having two first-generation branches, for has disease and doesn't have disease, and two second-generation branches leading out from each of these, for positive test and negative test. Then enter appropriate probabilities on the four branches. b. Use the general multiplication rule to calculate \(P(\) has disease and positive test). c. Calculate \(P\) (positive test). d. Calculate \(P\) (has disease \(\mid\) positive test). Does the result surprise you? Give an intuitive explanation for the size of this probability.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free