Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A medical research team wishes to evaluate two different treatments for a disease. Subjects are selected two at a time, and then one of the pair is assigned to each of the two treatments. The treatments are applied, and each is either a success (S) or a failure (F). The researchers keep track of the total number of successes for each treatment. They plan to continue the chance experiment until the number of successes for one treatment exceeds the number of successes for the other treatment by \(2 .\) For example, they might observe the results in the table below. The chance experiment would stop after the sixth pair, because Treatment 1 has 2 more successes than Treatment \(2 .\) The researchers would conclude that Treatment 1 is preferable to Treatment \(2 .\) Suppose that Treatment 1 has a success rate of \(.7\) (i.e., \(P(\) success \()=.7\) for Treatment 1 ) and that Treatment 2 has a success rate of \(.4\). Use simulation to estimate the probabilities in Parts (a) and (b). (Hint: Use a pair of random digits to simulate one pair of subjects. Let the first digit represent Treatment 1 and use \(1-7\) as an indication of a

Short Answer

Expert verified
It's not possible to provide a numerical short answer for this question because it depends on the simulation outcome. It must be noted that the expected probability for Treatment 1 is higher than Treatment 2. This might lean towards a conclusion where Treatment 1 stops first, with 2 more successes than Treatment 2. The exact numerical probabilities would depend on the simulated experiments.

Step by step solution

01

Understanding the problem

The purpose of this exercise is to determine probabilities of success for two different treatments, Treatment 1 and Treatment 2. Their success rates are given as .7 and .4 respectively. The result interpretation is to be made when the number of successes of one treatment exceeds the other's by 2.
02

Simulating results for Treatment 1

Let's simulate a large number of experiments (say, 10,000) for Treatment 1 using random numbers. The digits between 1 and 7 will be considered a 'success', simulating the .7 success rate or 70% probability of Treatment 1. Count the number of successes.
03

Simulating results for Treatment 2

Execute the same process for Treatment 2. This time, consider the digits between 1 and 4 as 'success', which would simulate the .4 success rate or 40% probability of Treatment 2. Keep track of the number of successes.
04

Comparison and Concluding Results

Compare the amount of successes of both treatments. The experiment ends when the number of successes for one treatment exceed the other by 2. Analyze the simulation results and compute the probabilities. This can be given by the count of experiments where one treatment exceeds the other by 2 successes over the total count of simulated experiments.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "SUVs Score Low in New Federal Rollover Ratings" (San Luis Obispo Tribune, January 6,2001 ) gave information on death rates for various kinds of accidents by vehicle type for accidents reported to the police. Suppose that we randomly select an accident reported to the police and consider the following events: \(R=\) event that the selected accident is a single-vehicle rollover, \(F=\) event that the selected accident is a frontal collision, and \(D=\) event that the selected accident results in a death. Information in the article indicates that the following probability estimates are reasonable: \(P(R)=.06, P(F)=.60\), \(P(R \mid D)=.30, P(F \mid D)=.54\).

A certain university has 10 vehicles available for use by faculty and staff. Six of these are vans and four are cars. On a particular day, only two requests for vehicles have been made. Suppose that the two vehicles to be assigned are chosen in a completely random fashion from among the 10 . a. Let \(E\) denote the event that the first vehicle assigned is a van. What is \(P(E)\) ? b. Let \(F\) denote the probability that the second vehicle assigned is a van. What is \(P(F \mid E)\) ? c. Use the results of Parts (a) and (b) to calculate \(P(E\) and \(F)\) (Hint: Use the definition of \(P(F \mid E) .)\)

A Gallup survey of 2002 adults found that \(46 \%\) of women and \(37 \%\) of men experience pain daily (San Luis Obispo Tribune, April 6, 2000). Suppose that this information is representative of U.S. adults. If a U.S. adult is selected at random, are the events selected adult is male and selected adult experiences pain daily independent or dependent? Explain.

The student council for a school of science and math has one representative from each of the five academic departments: biology (B), chemistry (C), mathematics (M), physics (P), and statistics (S). Two of these students are to be randomly selected for inclusion on a university-wide student committee (by placing five slips of paper in a bowl, mixing, and drawing out two of them). a. What are the 10 possible outcomes (simple events)? b. From the description of the selection process, all outcomes are equally likely; what is the probability of each simple event? c. What is the probability that one of the committee members is the statistics department representative? d. What is the probability that both committee members come from laboratory science departments?

Approximately \(30 \%\) of the calls to an airline reservation phone line result in a reservation being made. a. Suppose that an operator handles 10 calls. What is the probability that none of the 10 calls result in a reservation? b. What assumption did you make to calculate the probability in Part (a)? c. What is the probability that at least one call results in a reservation being made?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free