Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a new Internet company Mumble.com requires all employees to take a drug test. Mumble.com can afford only the inexpensive drug test - the one with a \(5 \%\) false-positive rate and a \(10 \%\) false-negative rate. (That means that \(5 \%\) of those who are not using drugs will incorrectly test positive and that \(10 \%\) of those who are actually using drugs will test negative.) Suppose that \(10 \%\) of those who work for Mumble.com are using the drugs for which Mumble is checking. (Hint: It may be helpful to draw a tree diagram to answer the questions that follow.) a. If one employee is chosen at random, what is the probability that the employee both uses drugs and tests positive? b. If one employee is chosen at random, what is the probability that the employee does not use drugs but tests positive anyway? c. If one employee is chosen at random, what is the probability that the employee tests positive? d. If we know that a randomly chosen employee has tested positive, what is the probability that he or she uses drugs?

Short Answer

Expert verified
a. The probability that a randomly chosen employee uses drugs and tests positive is 0.09 \n b. The probability that a randomly chosen employee does not use drugs but tests positive anyway is 0.045 \n c. The probability that a randomly chosen employee tests positive is 0.135 \n d. The probability that a randomly chosen employee uses drugs given a positive test is 0.6667

Step by step solution

01

Understanding the Problem

We are given: The probability that an employee uses drugs (P(D)) = 0.10, The probability that an employee doesn’t use drugs (P(ND)) = 1 – P(D) = 0.90, The probability that the test is positive given the person is a drug user (P(T|D)) = 1 – false negative rate = 1 - 0.10 = 0.90, The probability that the test is positive given the person is not a drug user (P(T|ND)) = false positive rate = 0.05.
02

Probability of a Drug User Testing Positive

To find P(D and T), we multiply P(D) and P(T|D), thus P(D and T) = P(D) * P(T|D) = (0.10) * (0.90) = 0.09.
03

Probability of a Non-Drug User Testing Positive

To find P(ND and T), we multiply P(ND) and P(T|ND), thus P(ND and T) = P(ND) * P(T|ND) = (0.90) * (0.05) = 0.045.
04

Probability that any Employee will Test Positive

To find this, we add all the ways an employee can test positive. Thus, P(T) = P(D and T) + P(ND and T) = 0.09 + 0.045 = 0.135.
05

Probability that an Employee Uses Drugs Given a Positive Test

Use the formula for conditional probability P(D|T) = P(D and T) / P(T) = 0.09 / 0.135 = 0.6667.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A mutual fund company offers its customers several different funds: a money market fund, three different bond funds, two stock funds, and a balanced fund. Among customers who own shares in just one fund, the percentages of customers in the different funds are as follows: \(\begin{array}{lr}\text { Money market } & 20 \% \\ \text { Short-term bond } & 15 \% \\ \text { Intermediate-term bond } & 10 \% \\ \text { Long-term bond } & 5 \% \\ \text { High-risk stock } & 18 \% \\ \text { Moderate-risk stock } & 25 \% \\ \text { Balanced fund } & 7 \%\end{array}\) A customer who owns shares in just one fund is to be selected at random. a. What is the probability that the selected individual owns shares in the balanced fund? b. What is the probability that the individual owns shares in a bond fund? c. What is the probability that the selected individual does not own shares in a stock fund?

The USA Today article referenced in Exercise \(6.37\) also gave information on seat belt usage by age, which is summarized in the following table of counts: $$ \begin{array}{lcc} & \begin{array}{c} \text { Does Not Use } \\ \text { Seat Belt } \\ \text { Regularly } \end{array} & \begin{array}{c} \text { Uses } \\ \text { Seat Belt } \\ \text { Regularly } \end{array} \\ \hline 18-24 & 59 & 41 \\ 25-34 & 73 & 27 \\ 35-44 & 74 & 26 \\ 45-54 & 70 & 30 \\ 55-64 & 70 & 30 \\ 65 \text { and older } & 82 & 18 \\ \hline \end{array} $$ Consider the following events: \(S=\) event that a randomly selected individual uses a seat belt regularly, \(A_{1}=\) event that a randomly selected individual is in age group \(18-24\), and \(A_{6}=\) event that a randomly selected individual is in age group 65 and older. a. Convert the counts to proportions and then use them to compute the following probabilities: i. \(P\left(A_{1}\right)\) ii. \(P\left(A_{1} \cap S\right)\) iii. \(P\left(A_{1} \mid S\right)\) iv. \(P\left(\right.\) not \(\left.A_{1}\right) \quad\) v. \(P\left(S \mid A_{1}\right) \quad\) vi. \(P\left(S \mid A_{6}\right)\) b. Using the probabilities \(P\left(S \mid A_{1}\right)\) and \(P\left(S \mid A_{6}\right)\) computed in Part (a), comment on how \(18-24\) -year-olds and seniors differ with respect to seat belt usage.

Suppose that a box contains 25 bulbs, of which 20 are good and the other 5 are defective. Consider randoml selecting three bulbs without replacement. Let \(E\) denote the event that the first bulb selected is good, \(F\) be the event that the second bulb is good, and \(G\) represent the event that the third bulb selected is good. a. What is \(P(E)\) ? b. What is \(P(F \mid E)\) ? c. What is \(P(G \mid E \cap F)\) ? d. What is the probability that all three selected bulbs are good?

According to a study released by the federal Substance Abuse and Mental Health Services Administration (Knight Ridder Tribune, September 9,1999 ), approximately \(8 \%\) of all adult full-time workers are drug users and approximately \(70 \%\) of adult drug users are employed full-time. a. Is it possible for both of the reported percentages to be correct? Explain. b. Define the events \(D\) and \(E\) as \(D=\) event that a randomly selected adult is a drug user and \(E=\) event that a randomly selected adult is employed full- time. What are the estimated values of \(P(D \mid E)\) and \(P(E \mid D) ?\) c. Is it possible to determine \(P(D)\), the probability that a randomly selected adult is a drug user, from the information given? If not, what additional information would be needed?

Suppose that an individual is randomly selected from the population of all adult males living in the United States. Let \(A\) be the event that the selected individual is oyer 6 ft in height, and let \(B\) be the event that the selected individual is a professional basketball player. Which do you think is larger, \(P(A \mid B)\) or \(P(B \mid A) ?\) Why?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free