Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "Birth Beats Long Odds for Leap Year Mom, Baby" (San Luis Obispo Tribune, March 2, 1996) reported that a leap year baby (someone born on February 29 ) became a leap year mom when she gave birth to a baby on February \(29,1996 .\) The article stated that a hospital spokesperson said that the probability of a leap year baby giving birth on her birthday was one in \(2.1\) million (approximately .00000047). a. In computing the given probability, the hospital spokesperson used the fact that a leap day occurs only once in 1461 days. Write a few sentences explaining how the hospital spokesperson computed the stated probability. b. To compute the stated probability, the hospital spokesperson had to assume that the birth was equally likely to occur on any of the 1461 days in a four- year period. Do you think that this is a reasonable assumption? Explain. c. Based on your answer to Part (b), do you think that the probability given by the hospital spokesperson is too small, about right, or too large? Explain.

Short Answer

Expert verified
The spokesperson calculated the probability by multiplying the chances of each independent event (being born and giving birth on a leap day). The assumption of equal birth likelihood across the 1461 days may not be entirely accurate due to factors influencing birth rates, but it's reasonably used for simplicity. Consequently, the provided probability of being both a leap year baby and mom could be roughly correct under these assumptions.

Step by step solution

01

Understanding the Probability Calculation

As stated in the exercise, a leap day occurs once in 1461 days (which are the total days in 4 years). Therefore, the chance of a person being born on a leap day, and then giving birth on a leap day would be \(1/1461 * 1/1461 = 1/2.134*10^6 = 0.0000004683\). This is approximately equal to \(0.00000047\), as stated by the hospital spokesperson. Hence, the spokesperson is merely multiplying the probabilities of the two independent events.
02

Evaluating the Assumption

The assumption made by the hospital spokesperson is that a birth is equally likely to occur on any of the 1461 days in a four-year period. Realistically, this might not be completely accurate since birth rates can vary due to factors such as season, weather, and cultural practices among others. However, without specific birth data to suggest otherwise and for simplicity, it can be seen as a reasonable assumption.
03

Evaluating the Provided Probability

The calculated probability already assumes that births are equally distributed throughout the year. Given our discussion in Step 2, if we consider variations in birth rates due to factors like seasonality, the probability could be slightly higher or lower. However, without specific data, we cannot make a definitive statement and thus the provided probability seems roughly correct given the used assumption.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Of the 10,000 students at a certain university, 7000 have Visa cards, 6000 have MasterCards, and 5000 have both. Suppose that a student is randomly selected. a. What is the probability that the selected student has a Visa card? b. What is the probability that the selected student has both cards? c. Suppose you learn that the selected individual has a Visa card (was one of the 7000 with such a card). Now what is the probability that this student has both cards? d. Are the events has \(a\) Visa card and has a MasterCard independent? Explain. e. Answer the question posed in Part (d) if only 4200 of the students have both cards.

A student has a box containing 25 computer disks, of which 15 are blank and 10 are not. She randomly selects disks one by one and examines each one, terminating the process only when she finds a blank disk. What is the probability that she must examine at least two disks? (Hint: What must be true of the first disk?)

The article "SUVs Score Low in New Federal Rollover Ratings" (San Luis Obispo Tribune, January 6,2001 ) gave information on death rates for various kinds of accidents by vehicle type for accidents reported to the police. Suppose that we randomly select an accident reported to the police and consider the following events: \(R=\) event that the selected accident is a single-vehicle rollover, \(F=\) event that the selected accident is a frontal collision, and \(D=\) event that the selected accident results in a death. Information in the article indicates that the following probability estimates are reasonable: \(P(R)=.06, P(F)=.60\), \(P(R \mid D)=.30, P(F \mid D)=.54\).

An individual is presented with three different glasses of cola, labeled C, D, and P. He is asked to taste all three and then list them in order of preference. Suppose that the same cola has actually been put into all three glasses. a. What are the simple events in this chance experiment, and what probability would you assign to each one? b. What is the probability that \(\mathrm{C}\) is ranked first? c. What is the probability that \(\mathrm{C}\) is ranked first \(a n d \mathrm{D}\) is ranked last?

USA Today (June 6,2000 ) gave information on seat belt usage by gender. The proportions in the following table are based on a survey of a large number of adult men and women in the United States: $$ \begin{array}{l|cc} \hline & \text { Male } & \text { Female } \\ \hline \text { Uses Seat Belts Regularly } & .10 & .175 \\ \begin{array}{l} \text { Does Not Use Seat Belts } \\ \text { Regularly } \end{array} & .40 & .325 \\ \hline \end{array} $$ Assume that these proportions are representative of adults in the United States and that a U.S. adult is selected at random. a. What is the probability that the selected adult regularly uses a seat belt? b. What is the probability that the selected adult regularly uses a seat belt given that the individual selected is male? c. What is the probability that the selected adult does not use a seat belt regularly given that the selected individual is female? d. What is the probability that the selected individual is female given that the selected individual does not use a seat belt regularly? e. Are the probabilities from Parts (c) and (d) equal? Write a couple of sentences explaining why this is so.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free