Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In an article that appears on the web site of the American Statistical Association (www.amstat.org), Carlton Gunn, a public defender in Seattle, Washington, wrote about how he uses statistics in his work as an attorney. He states: I personally have used statistics in trying to challenge the reliability of drug testing results. Suppose the chance of a mistake in the taking and processing of a urine sample for a drug test is just 1 in 100 . And your client has a "dirty" (i.e., positive) test result. Only a 1 in 100 chance that it could be wrong? Not necessarily. If the vast majority of all tests given - say 99 in 100 \- are truly clean, then you get one false dirty and one true dirty in every 100 tests, so that half of the dirty tests are false. Define the following events as \(T D=\) event that the test result is dirty, \(T C=\) event that the test result is clean, \(D=\) event that the person tested is actually dirty, and \(C=\) event that the person tested is actually clean. a. Using the information in the quote, what are the values of \mathbf{i} . ~ \(P(T D \mid D)\) iii. \(P(C)\) ii. \(P(T D \mid C) \quad\) iv. \(P(D)\) b. Use the law of total probability to find \(P(T D)\). c. Use Bayes' rule to evaluate \(P(C \mid T D)\). Is this value consistent with the argument given in the quote? Explain.

Short Answer

Expert verified
The values of i. \(P(T D | D) = 1\), ii. \(P(T D | C) = 0.01\), iii. \(P(C) = 0.99\), and iv. \(P(D) = 0.01\). The total probability \(P(T D) = 0.02\). The Bayesian probability \(P(C | T D) = 0.495\). This result is consistent with the argument in the quote indicating that about half of the positive tests could be false positives.

Step by step solution

01

Assign Values

From the statement, we know that:\n- \(P(T D | D) = 1\) (if person is dirty, the test is always dirty), \n- \(P(T D | C) = 0.01\) (there is a 1% chance that a clean person will test dirty), \n- \(P(C) = 0.99\) (99% of people tested are clean), \n- \(P(D) = 0.01\) (1% of people tested are dirty).
02

Calculate Total Probability

We can use the law of total probability to calculate \(P(T D)\). The total probability law states that the probability of event A is equal to the sum of the probability of A intersecting with each event Bi in a partition of the sample space.\nSo, \(P(T D) = P(T D | D) * P(D) + P(T D | C) * P(C) = 1 * 0.01 + 0.01 * 0.99 = 0.02.\)
03

Use Bayes' Rule

Bayes' Rule is used to reverse conditional probabilities. The formula is: \n\(P(A | B) = P(B | A) * P(A) / P(B)\)\nWe need to find \(P(C | T D)\), the probability that a person is clean given a dirty test.\nSo, \(P(C | T D) = P(T D | C) * P(C) / P(T D) = 0.01 * 0.99 / 0.02 = 0.495\)\nThis indicates that there is a 49.5% chance that a person is clean even if the test is dirty. This result is consistent with the public defender's statement that 'half of the dirty tests are false'.
04

Interpretation

The public defender's statistical argument checks out mathematically. For a test that only makes a mistake 1% of the time, if 99% of the people are clean, then about 50% of the positive tests could be false positives. It is important to consider the base rates, in this case the fact that a very large majority of the tested people are clean.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

After all students have left the classroom, a statistics professor notices that four copies of the text were left under desks. At the beginning of the next lecture, the professor distributes the four books at random to the four stu- dents \((1,2,3\), and 4\()\) who claim to have left books. One possible outcome is that 1 receives 2 's book, 2 receives 4 's book, 3 receives his or her own book, and 4 receives 1 's book. This outcome can be abbreviated \((2,4,3,1)\). a. List the 23 other possible outcomes. b. Which outcomes are contained in the event that exactly two of the books are returned to their correct owners? As- suming equally likely outcomes, what is the probability of this event? c. What is the probability that exactly one of the four students receives his or her own book? d. What is the probability that exactly three receive their own books? e. What is the probability that at least two of the four students receive their own books?

An individual is presented with three different glasses of cola, labeled C, D, and P. He is asked to taste all three and then list them in order of preference. Suppose that the same cola has actually been put into all three glasses. a. What are the simple events in this chance experiment, and what probability would you assign to each one? b. What is the probability that \(\mathrm{C}\) is ranked first? c. What is the probability that \(\mathrm{C}\) is ranked first \(a n d \mathrm{D}\) is ranked last?

Only \(0.1 \%\) of the individuals in a certain population have a particular disease (an incidence rate of .001). Of those who have the disease, \(95 \%\) test positive when a certain diagnostic test is applied. Of those who do not have the disease, \(90 \%\) test negative when the test is applied. Suppose that an individual from this population is randomly selected and given the test. a. Construct a tree diagram having two first-generation branches, for has disease and doesn't have disease, and two second-generation branches leading out from each of these, for positive test and negative test. Then enter appropriate probabilities on the four branches. b. Use the general multiplication rule to calculate \(P(\) has disease and positive test). c. Calculate \(P\) (positive test). d. Calculate \(P\) (has disease \(\mid\) positive test). Does the result surprise you? Give an intuitive explanation for the size of this probability.

A college library has four copies of a certain book; the copies are numbered \(1,2,3\), and 4 . Two of these are selected at random. The first selected book is placed on 2 -hr reserve, and the second book can be checked out overnight. a. Construct a tree diagram to display the 12 outcomes in the sample space. b. Let \(A\) denote the event that at least one of the books selected is an even-numbered copy. What outcomes are in \(A ?\) c. Suppose that copies 1 and 2 are first printings, whereas copies 3 and 4 are second printings. Let \(B\) denote the event that exactly one of the copies selected is a first printing. What outcomes are contained in \(B\) ?

The National Public Radio show Car Talk has a feature called "The Puzzler." Listeners are asked to send in answers to some puzzling questions-usually about cars but sometimes about probability (which, of course, must account for the incredible popularity of the program!). Suppose that for a car question, 800 answers are submitted, of which 50 are correct. Suppose also that the hosts randomly select two answers from those submitted with replacement. a. Calculate the probability that both selected answers are correct. (For purposes of this problem, keep at least five digits to the right of the decimal.) b. Suppose now that the hosts select the answers at random but without replacement. Use conditional probability to evaluate the probability that both answers selected are correct. How does this probability compare to the one computed in Part (a)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free