Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A shipment of 5000 printed circuit boards contains 40 that are defective. Two boards will be chosen at random, without replacement. Consider the two events \(E_{1}=\) event that the first board selected is defective and \(E_{2}=\) event that the second board selected is defective. a. Are \(E_{1}\) and \(E_{2}\) dependent events? Explain in words. b. Let not \(E_{1}\) be the event that the first board selected is not defective (the event \(E_{1}^{C}\) ). What is \(P\left(\right.\) not \(\left.E_{1}\right)\) ? c. How do the two probabilities \(P\left(E_{2} \mid E_{1}\right)\) and \(P\left(E_{2} \mid\right.\) not \(\left.E_{1}\right)\) compare? d. Based on your answer to Part (c), would it be reasonable to view \(E_{1}\) and \(E_{2}\) as approximately independent?

Short Answer

Expert verified
a. Yes, \(E_{1}\) and \(E_{2}\) are technically dependent events in this context, as selection of first board affects the composition of the boards that the second board is chosen from. But since number of defective is much less than total, the dependence is negligible.\n b. The probability of not \(E_{1}\) is 0.992.\n c. The two conditional probabilities, \(P\left(E_{2} \mid E_{1}\right)\) and \(P\left(E_{2} \mid E_{1}^{C}\right)\), are very similar.\n d. Given the similarity of the two conditional probabilities, \(E_{1}\) and \(E_{2}\) could be viewed as approximately independent.

Step by step solution

01

Dependence of events

Events \(E_{1}\) and \(E_{2}\) are dependent. This is because once a board is selected, the total number of boards reduces by 1. Hence, the probability of the second event depends on the outcome of the first event: if the first board is defective, there would be 39 defective boards left out of 4999, if not, there would still be 40 defective boards out of 4999.
02

Probability of not \(E_{1}\)

The event \(E_{1}^{C}\), or not \(E_{1}\), is that the first board selected is not defective. There are 5000-40=4960 such favourable cases. Hence, \(P\left(E_{1}^{C}\right) = \frac{4960}{5000} = 0.992\).
03

Comparison of the conditional probabilities

The conditional probability \(P\left(E_{2} \mid E_{1}\right) = \frac{39}{4999}\) because if the first selected board is defective (event \(E_{1}\)), we have 39 defective boards remaining out of 4999. The conditional probability \(P\left(E_{2} \mid E_{1}^{C}\right) = \frac{40}{4999}\) because if the first selected board is not defective, we still have 40 defective boards remaining out of 4999. These two probabilities are quite similar.
04

Independent or dependent

Even though the events are technically dependent, the two probabilities calculated in step 3 are very similar. This is due to the fact that the number of defective boards is very small compared to the total number of boards. Hence, it would be reasonable to view \(E_{1}\) and \(E_{2}\) as approximately independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that a new Internet company Mumble.com requires all employees to take a drug test. Mumble.com can afford only the inexpensive drug test - the one with a \(5 \%\) false-positive rate and a \(10 \%\) false-negative rate. (That means that \(5 \%\) of those who are not using drugs will incorrectly test positive and that \(10 \%\) of those who are actually using drugs will test negative.) Suppose that \(10 \%\) of those who work for Mumble.com are using the drugs for which Mumble is checking. (Hint: It may be helpful to draw a tree diagram to answer the questions that follow.) a. If one employee is chosen at random, what is the probability that the employee both uses drugs and tests positive? b. If one employee is chosen at random, what is the probability that the employee does not use drugs but tests positive anyway? c. If one employee is chosen at random, what is the probability that the employee tests positive? d. If we know that a randomly chosen employee has tested positive, what is the probability that he or she uses drugs?

A transmitter is sending a message using a binary code, namely, a sequence of 0's and 1's. Each transmitted bit \((0\) or 1\()\) must pass through three relays to reach the receiver. At each relay, the probability is \(.20\) that the bit sent on is different from the bit received (a reversal). Assume that the relays operate independently of one another: transmitter \(\rightarrow\) relay \(1 \rightarrow\) relay \(2 \rightarrow\) relay \(3 \rightarrow\) receiver a. If a 1 is sent from the transmitter, what is the probability that a 1 is sent on by all three relays? b. If a 1 is sent from the transmitter, what is the probability that a 1 is received by the receiver? (Hint: The eight experimental outcomes can be displayed on a tree diagram with three generations of branches, one generation for each relay.)

A medical research team wishes to evaluate two different treatments for a disease. Subjects are selected two at a time, and then one of the pair is assigned to each of the two treatments. The treatments are applied, and each is either a success (S) or a failure (F). The researchers keep track of the total number of successes for each treatment. They plan to continue the chance experiment until the number of successes for one treatment exceeds the number of successes for the other treatment by \(2 .\) For example, they might observe the results in the table below. The chance experiment would stop after the sixth pair, because Treatment 1 has 2 more successes than Treatment \(2 .\) The researchers would conclude that Treatment 1 is preferable to Treatment \(2 .\) Suppose that Treatment 1 has a success rate of \(.7\) (i.e., \(P(\) success \()=.7\) for Treatment 1 ) and that Treatment 2 has a success rate of \(.4\). Use simulation to estimate the probabilities in Parts (a) and (b). (Hint: Use a pair of random digits to simulate one pair of subjects. Let the first digit represent Treatment 1 and use \(1-7\) as an indication of a

According to a study conducted by a risk assessment firm (Associated Press, December 8,2005 ), drivers residing within one mile of a restaurant are \(30 \%\) more likely to be in an accident in a given policy year. Consider the following two events: \(A=\) event that a driver has an accident during a policy year \(R=\) event that a driver lives within one mile of a restaurant Which of the following four probability statements is consistent with the findings of this survey? Justify your choice. i. \(P(A \mid R)=.3\) iii. \(\frac{P(A \mid R)}{P\left(A \mid R^{C}\right)}=.3\) ii. \(P\left(A \mid R^{C}\right)=.3 \quad\) iv. \(\frac{P(A \mid R)-P\left(A \mid R^{C}\right)}{P\left(A \mid R^{C}\right)}=.3\)

The general addition rule for three events states that $$ \begin{aligned} P(A \text { or } B \text { or } C)=& P(A)+P(B)+P(C) \\ &-P(A \text { and } B)-P(A \text { and } C) \\ &-P(B \text { and } C)+P(A \text { and } B \text { and } C) \end{aligned} $$ A new magazine publishes columns entitled "Art" (A), "Books" (B), and "Cinema" (C). Suppose that \(14 \%\) of all subscribers read A, \(23 \%\) read \(\mathrm{B}, 37 \%\) read \(\mathrm{C}, 8 \%\) read \(\mathrm{A}\) and \(\mathrm{B}, 9 \%\) read \(\mathrm{A}\) and \(\mathrm{C}, 13 \%\) read \(\mathrm{B}\) and \(\mathrm{C}\), and \(5 \%\) read all three columns. What is the probability that a randomly selected subscriber reads at least one of these three columns?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free