Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Three friends \((\mathrm{A}, \mathrm{B}\), and \(\mathrm{C})\) will participate in a round-robin tournament in which each one plays both of the others. Suppose that \(P(\) A beats \(B)=.7, P(\) A beats \(C)=.8\), \(P(\mathrm{~B}\) beats \(\mathrm{C})=.6\), and that the outcomes of the three matches are independent of one another. a. What is the probability that \(\mathrm{A}\) wins both her matches and that B beats C? b. What is the probability that A wins both her matches? c. What is the probability that A loses both her matches? d. What is the probability that each person wins one match? (Hint: There are two different ways for this to happen.)

Short Answer

Expert verified
a) The probability that A wins both matches and B beats C is \(0.7 * 0.8 * 0.6 = 0.336\). b) The probability that A wins both her matches is \(0.7 * 0.8 = 0.56\). c) The probability that A loses both her matches is \(0.3 * 0.2 = 0.06\). d) The probability that each person wins one match is \((0.7 * 0.6 * 0.2) + (0.3 * 0.4 * 0.8) = 0.268\).

Step by step solution

01

Part (a) Solution

The task is to find the probability that A wins both matches and B beats C. Since these events are independent, the combined probability is simply the product of individual probabilities. So take the probability of A winning against B, which is 0.7, multiply it by the probability of A winning against C, which is 0.8, and finally multiply it by the probability of B winning against C, which is 0.6.
02

Part (b) Solution

The task is to find the probability that A wins both her matches. Since the matches are independent, simply multiply the probability of A winning against B, which is 0.7, by the probability of A winning against C, which is 0.8.
03

Part (c) Solution

The task is to find the probability that A loses both her matches. The event of A losing a match is the complement of A winning. So the probability of A losing against B is \(1 - P(B)\), which is 0.3, and against C it's \(1 - P(C)\), which is 0.2. As these are also independent, simply multiply these two probabilities.
04

Part (d) Solution

The task is to find the probability that each person wins one match. There are two cases for this: either A beats B, B beats C, and C beats A, or C beats B, B beats A, and A beats C. Compute the probabilities for each case by multiplying the probabilities of those individual matches, and then add them for the final probability, as these two cases are mutually exclusive and therefore the probabilities can be added.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A transmitter is sending a message using a binary code, namely, a sequence of 0's and 1's. Each transmitted bit \((0\) or 1\()\) must pass through three relays to reach the receiver. At each relay, the probability is \(.20\) that the bit sent on is different from the bit received (a reversal). Assume that the relays operate independently of one another: transmitter \(\rightarrow\) relay \(1 \rightarrow\) relay \(2 \rightarrow\) relay \(3 \rightarrow\) receiver a. If a 1 is sent from the transmitter, what is the probability that a 1 is sent on by all three relays? b. If a 1 is sent from the transmitter, what is the probability that a 1 is received by the receiver? (Hint: The eight experimental outcomes can be displayed on a tree diagram with three generations of branches, one generation for each relay.)

Two different airlines have a flight from Los Angeles to New York that departs each weekday morning at a certain time. Let \(E\) denote the event that the first airline's flight is fully booked on a particular day, and let \(F\) denote the event that the second airline's flight is fully booked on that same day. Suppose that \(P(E)=.7, P(F)=.6\), and \(P(E \cap F)=.54\). a. Calculate \(P(E \mid F)\) the probability that the first airline's flight is fully booked given that the second airline's flight is fully booked. b. Calculate \(P(F \mid E)\).

Approximately \(30 \%\) of the calls to an airline reservation phone line result in a reservation being made. a. Suppose that an operator handles 10 calls. What is the probability that none of the 10 calls result in a reservation? b. What assumption did you make to calculate the probability in Part (a)? c. What is the probability that at least one call results in a reservation being made?

Insurance status - covered (C) or not covered (N) \- is determined for each individual arriving for treatment at a hospital's emergency room. Consider the chance experiment in which this determination is made for two randomly selected patients. The simple events are \(O_{1}=(\mathrm{C}, \mathrm{C})\) \(O_{2}=(\mathrm{C}, \mathrm{N}), O_{3}=(\mathrm{N}, \mathrm{C})\), and \(O_{4}=(\mathrm{N}, \mathrm{N}) .\) Suppose that probabilities are \(P\left(O_{1}\right)=.81, P\left(O_{2}\right)=.09, P\left(O_{3}\right)=.09\), and \(P\left(O_{4}\right)=.01\). a. What outcomes are contained in \(A\), the event that at most one patient is covered, and what is \(P(A)\) ? b. What outcomes are contained in \(B\), the event that the two patients have the same status with respect to coverage, and what is \(P(B)\) ?

In a school machine shop, \(60 \%\) of all machine breakdowns occur on lathes and \(15 \%\) occur on drill presses. Let \(E\) denote the event that the next machine breakdown is on a lathe, and let \(F\) denote the event that a drill press is the next machine to break down. With \(P(E)=.60\) and \(P(F)=.15\), calculate: a. \(P\left(E^{C}\right)\) b. \(P(E \cup F)\) c. \(P\left(E^{C} \cap F^{C}\right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free