Chapter 6: Problem 54
Three friends \((\mathrm{A}, \mathrm{B}\), and \(\mathrm{C})\) will participate in a round-robin tournament in which each one plays both of the others. Suppose that \(P(\) A beats \(B)=.7, P(\) A beats \(C)=.8\), \(P(\mathrm{~B}\) beats \(\mathrm{C})=.6\), and that the outcomes of the three matches are independent of one another. a. What is the probability that \(\mathrm{A}\) wins both her matches and that B beats C? b. What is the probability that A wins both her matches? c. What is the probability that A loses both her matches? d. What is the probability that each person wins one match? (Hint: There are two different ways for this to happen.)