Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The following case study was reported in the article "Parking Tickets and Missing Women," which appeared in an early edition of the book Statistics: A Guide to the \(U n\) known. In a Swedish trial on a charge of overtime parking, a police officer testified that he had noted the position of the two air valves on the tires of a parked car: To the closest hour, one was at the one o'clock position and the other was at the six o'clock position. After the allowable time for parking in that zone had passed, the policeman returned, noted that the valves were in the same position, and ticketed the car. The owner of the car claimed that he had left the parking place in time and had returned later. The valves just happened by chance to be in the same positions. An "expert" witness computed the probability of this occurring as \((1 / 12)(1 / 12)=1 / 44\). a. What reasoning did the expert use to arrive at the probability of \(1 / 44\) ? b. Can you spot the error in the reasoning that leads to the stated probability of \(1 / 44\) ? What effect does this error have on the probability of occurrence? Do you think that \(1 / 44\) is larger or smaller than the correct probability of occurrence?

Short Answer

Expert verified
The expert assumed the valve positions to be independent and hence calculated the combined probability as \(1 / 44\). This is incorrect because once the position of one valve is established, the position of another is not uniformly distributed. Also, a calculation error was made in the answer as it should be \(1 / 144\). The correct probability considering both valves' positions at the same time should be \(1 / 12\).

Step by step solution

01

Identify expert's reasoning

The expert concluded that the probability of the car owner leaving and returning to the same parking spot with the tire valves in the exact same position as \(1 / 44\) by assuming each hour on a clock (like a 12-hour clock) as a possible position for the valves. Hence, with two valves, the expert considered the probability of one valve being in a particular position as \(1 / 12\) and the probability of the second valve being in the same position as again \(1 / 12\). The combined probability is the product: \((1 / 12) * (1 / 12) = 1 / 144\).
02

Spot the error

The expert made a mistake by considering the position of each valve as independent of one another. Actually, once the position of the first valve is established, the position of the second one is no longer uniformly distributed. Moreover, the probability was miscalculated as \(1 / 44\), whereas the calculations give \(1 / 144\).
03

Correct Probability

A correct approach would have been to consider the two positions as one event. Meaning, the correct statement is 'What is the probability that in any random hour, both air valves point to exactly 1 o'clock and 6 o'clock position respectively?'. As there are 12 hours on a clock, the correct probability of such an event would be \(1 / 12\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The student council for a school of science and math has one representative from each of the five academic departments: biology (B), chemistry (C), mathematics (M), physics (P), and statistics (S). Two of these students are to be randomly selected for inclusion on a university-wide student committee (by placing five slips of paper in a bowl, mixing, and drawing out two of them). a. What are the 10 possible outcomes (simple events)? b. From the description of the selection process, all outcomes are equally likely; what is the probability of each simple event? c. What is the probability that one of the committee members is the statistics department representative? d. What is the probability that both committee members come from laboratory science departments?

A deck of 52 cards is mixed well, and 5 cards are dealt. a. It can be shown that (disregarding the order in which the cards are dealt) there are \(2,598,960\) possible hands, of which only 1287 are hands consisting entirely of spades. What is the probability that a hand will consist entirely of spades? What is the probability that a hand will consist entirely of a single suit? b. It can be shown that exactly 63,206 hands contain only spades and clubs, with both suits represented. What is the probability that a hand consists entirely of spades and clubs with both suits represented? c. Using the result of Part (b), what is the probability that a hand contains cards from exactly two suits?

Suppose that we define the following events: \(C=\) event that a randomly selected driver is observed to be using a cell phone, \(A=\) event that a randomly selected driver is observed driving a passenger automobile, \(V=\) event that a randomly selected driver is observed driving a van or SUV, and \(T=\) event that a randomly selected driver is observed driving a pickup truck. Based on the article "Three Percent of Drivers on Hand-Held Cell Phones at Any Given Time" (San Luis Obispo Tribune, July 24, 2001), the following probability estimates are reasonable: \(P(C)=.03\), \(P(C \mid A)=.026, P(C \mid V)=.048\), and \(P(C \mid T)=.019 .\) Ex- plain why \(P(C)\) is not just the average of the three given conditional probabilities.

The Cedar Rapids Gazette (November 20, 1999) reported the following information on compliance with child restraint laws for cities in Iowa: $$ \begin{array}{lcc} & \begin{array}{c} \text { Number of } \\ \text { Children } \\ \text { Observed } \end{array} & \begin{array}{c} \text { Number } \\ \text { Properly } \\ \text { City } \end{array} & \text { Restrained } \\ \hline \text { Cedar Falls } & 210 & 173 \\ \text { Cedar Rapids } & 231 & 206 \\ \text { Dubuque } & 182 & 135 \\ \text { Iowa City (city) } & 175 & 140 \\ \text { Iowa City (interstate) } & 63 & 47 \\ \hline \end{array} $$ a. Use the information provided to estimate the following probabilities: i. The probability that a randomly selected child is properly restrained given that the child is observed in Dubuque. ii. The probability that a randomly selected child is properly restrained given that the child is observed in a city that has "Cedar" in its name. b. Suppose that you are observing children in the Iowa City area. Use a tree diagram to illustrate the possible outcomes of an observation that considers both the location of the observation (city or interstate) and whether the child observed was properly restrained.

There are two traffic lights on the route used by a certain individual to go from home to work. Let \(E\) denote the event that the individual must stop at the first light, and define the event \(F\) in a similar manner for the second light. Suppose that \(P(E)=.4, P(F)=.3\) and \(P(E \cap F)=.15\) a. What is the probability that the individual must stop at at least one light; that is, what is the probability of the event \(E \cup F ?\) b. What is the probability that the individual needn't stop at either light? c. What is the probability that the individual must stop at exactly one of the two lights? d. What is the probability that the individual must stop just at the first light? (Hint: How is the probability of this event related to \(P(E)\) and \(P(E \cap F) ?\) A Venn diagram might help.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free