Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Information from a poll of registered voters in Cedar Rapids, Iowa, to assess voter support for a new school tax was the basis for the following statements (Cedar Rapids Gazette, August 28,1999 ): The poll showed 51 percent of the respondents in the Cedar Rapids school district are in favor of the tax. The approval rating rises to 56 percent for those with children in public schools. It falls to 45 percent for those with no children in public schools. The older the respondent, the less favorable the view of the proposed tax: 36 percent of those over age 56 said they would vote for the tax compared with 72 percent of 18- to 25 -year-olds. Suppose that a registered voter from Cedar Rapids is selected at random, and define the following events: \(F=\) event that the selected individual favors the school \(\operatorname{tax}, C=\) event that the selected individual has children in the public schools, \(O=\) event that the selected individual is over 56 years old, and \(Y=\) event that the selected individual is \(18-25\) years old. a. Use the given information to estimate the values of the following probabilities: i. \(P(F)\) ii. \(P(F \mid C)\) iii. \(P\left(F \mid C^{C}\right)\) iv. \(P(F \mid O)\) v. \(P(F \mid Y)\) b. Are \(F\) and \(C\) independent? Justify your answer. c. Are \(F\) and \(O\) independent? Justify your answer.

Short Answer

Expert verified
i. \(P(F)\) = 0.51 \nii. \(P(F|C)\) = 0.56 \niii. \(P(F|C^C)\) = 0.45 \niv. \(P(F|O)\) = 0.36 \nv. \(P(F|Y)\) = 0.72 \nb. F and C are not independent. \nc. F and O are not independent.

Step by step solution

01

Identify the given information

The following information is provided: \n\n1. 51% of respondents favor the tax. \n2. The approval rating rises to 56% for those with children in public schools. \n3. The approval rating falls to 45% for those with no children in public schools. \n4. 36% of those over age 56 said they would vote for the tax. \n5. 72% of 18 - to 25 -year-olds said they would vote for the tax.
02

Calculate the individual probabilities

From the given information, we can directly determine: \n\ni. \(P(F)\) = 0.51 (probability that a randomly chosen individual supports the tax) \nii. \(P(F|C)\) = 0.56 (probability that a randomly chosen individual supports the tax given that they have children in public schools) \niii. \(P(F|C^C)\) = 0.45 (probability that an individual supports the tax given that they don't have children in public schools) \niv. \(P(F|O)\) = 0.36 (probability that a randomly chosen individual supports the tax given they are over the age of 56) \nv. \(P(F|Y)\) = 0.72 (probability that an individual supports the tax given they are between 18 and 25 years old)
03

Determine independence of F and C

Two events are independent if the occurrence of one does not change the probability of the other. Mathematically, two events A and B are independent if \(P(A|B) = P(A)\). So to determine if F and C are independent, we can compare \(P(F|C)\) to \(P(F)\). So if 0.56 (which is \(P(F|C)\)) equals 0.51 (which is \(P(F)\)), the two events are independent. Since these values are not equal, F and C are not independent.
04

Determine independence of F and O

Following the same reasoning as in the previous step, we compare \(P(F|O)\) to \(P(F)\). So if 0.36 (which is \(P(F|O)\)) equals 0.51 (which is \(P(F)\)), the two events are independent. Since these values are not equal, F and O are not independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A student has a box containing 25 computer disks, of which 15 are blank and 10 are not. She randomly selects disks one by one and examines each one, terminating the process only when she finds a blank disk. What is the probability that she must examine at least two disks? (Hint: What must be true of the first disk?)

The general addition rule for three events states that $$ \begin{aligned} P(A \text { or } B \text { or } C)=& P(A)+P(B)+P(C) \\ &-P(A \text { and } B)-P(A \text { and } C) \\ &-P(B \text { and } C)+P(A \text { and } B \text { and } C) \end{aligned} $$ A new magazine publishes columns entitled "Art" (A), "Books" (B), and "Cinema" (C). Suppose that \(14 \%\) of all subscribers read A, \(23 \%\) read \(\mathrm{B}, 37 \%\) read \(\mathrm{C}, 8 \%\) read \(\mathrm{A}\) and \(\mathrm{B}, 9 \%\) read \(\mathrm{A}\) and \(\mathrm{C}, 13 \%\) read \(\mathrm{B}\) and \(\mathrm{C}\), and \(5 \%\) read all three columns. What is the probability that a randomly selected subscriber reads at least one of these three columns?

A radio station that plays classical music has a "by request" program each Saturday evening. The percentages of requests for composers on a particular night are as follows: \(\begin{array}{lr}\text { Bach } & 5 \% \\ \text { Beethoven } & 26 \% \\\ \text { Brahms } & 9 \% \\ \text { Dvorak } & 2 \% \\ \text { Mendelssohn } & 3 \% \\ \text { Mozart } & 21 \% \\ \text { Schubert } & 12 \% \\ \text { Schumann } & 7 \% \\ \text { Tchaikovsky } & 14 \% \\ \text { Wagner } & 1 \%\end{array}\) Suppose that one of these requests is to be selected at random. a. What is the probability that the request is for one of the three \(\mathrm{B}^{\prime}\) s? b. What is the probability that the request is not for one of the two S's? c. Neither Bach nor Wagner wrote any symphonies. What is the probability that the request is for a composer who wrote at least one symphony?

Suppose that a box contains 25 bulbs, of which 20 are good and the other 5 are defective. Consider randoml selecting three bulbs without replacement. Let \(E\) denote the event that the first bulb selected is good, \(F\) be the event that the second bulb is good, and \(G\) represent the event that the third bulb selected is good. a. What is \(P(E)\) ? b. What is \(P(F \mid E)\) ? c. What is \(P(G \mid E \cap F)\) ? d. What is the probability that all three selected bulbs are good?

Many cities regulate the number of taxi licenses, and there is a great deal of competition for both new and existing licenses. Suppose that a city has decided to sell 10 new licenses for \(\$ 25,000\) each. A lottery will be held to determine who gets the licenses, and no one may request more than three licenses. Twenty individuals and taxi companies have entered the lottery. Six of the 20 entries are requests for 3 licenses, 9 are requests for 2 licenses, and the rest are requests for a single license. The city will select requests at random, filling as many of the requests as possible. For example, the city might fill requests for \(2,3,1\), and 3 licenses and then select a request for \(3 .\) Because there is only one license left, the last request selected would receive a license, but only one. a. An individual has put in a request for a single license. Use simulation to approximate the probability that the request will be granted. Perform at least 20 simulated lotteries (more is better!). b. Do you think that this is a fair way of distributing licenses? Can you propose an alternative procedure for distribution?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free