Chapter 6: Problem 38
The USA Today article referenced in Exercise \(6.37\) also gave information on seat belt usage by age, which is summarized in the following table of counts: $$ \begin{array}{lcc} & \begin{array}{c} \text { Does Not Use } \\ \text { Seat Belt } \\ \text { Regularly } \end{array} & \begin{array}{c} \text { Uses } \\ \text { Seat Belt } \\ \text { Regularly } \end{array} \\ \hline 18-24 & 59 & 41 \\ 25-34 & 73 & 27 \\ 35-44 & 74 & 26 \\ 45-54 & 70 & 30 \\ 55-64 & 70 & 30 \\ 65 \text { and older } & 82 & 18 \\ \hline \end{array} $$ Consider the following events: \(S=\) event that a randomly selected individual uses a seat belt regularly, \(A_{1}=\) event that a randomly selected individual is in age group \(18-24\), and \(A_{6}=\) event that a randomly selected individual is in age group 65 and older. a. Convert the counts to proportions and then use them to compute the following probabilities: i. \(P\left(A_{1}\right)\) ii. \(P\left(A_{1} \cap S\right)\) iii. \(P\left(A_{1} \mid S\right)\) iv. \(P\left(\right.\) not \(\left.A_{1}\right) \quad\) v. \(P\left(S \mid A_{1}\right) \quad\) vi. \(P\left(S \mid A_{6}\right)\) b. Using the probabilities \(P\left(S \mid A_{1}\right)\) and \(P\left(S \mid A_{6}\right)\) computed in Part (a), comment on how \(18-24\) -year-olds and seniors differ with respect to seat belt usage.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.