Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that an individual is randomly selected from the population of all adult males living in the United States. Let \(A\) be the event that the selected individual is oyer 6 ft in height, and let \(B\) be the event that the selected individual is a professional basketball player. Which do you think is larger, \(P(A \mid B)\) or \(P(B \mid A) ?\) Why?

Short Answer

Expert verified
The probability of an adult male being over 6 ft in height given that he is a professional basketball player (\(P(A|B)\)) is more likely to be larger than the probability of an adult male being a professional basketball player given that he is over 6 ft (\(P(B|A)\)).

Step by step solution

01

Understanding the Concept of Conditional Probability

Conditional probability is the probability of an event given that another event has occurred. In this case, \(P(A|B)\) denotes the probability of 'A' happening given that 'B' has already happened. Similarly, \(P(B|A)\) denotes the probability of 'B' happening given that 'A' has already happened.
02

Relate to Real-world Scenario

In the context of the problem, \(P(A|B)\) refers to the probability of an adult male being over 6 ft in height given that he is already confirmed to be a professional basketball player. This is likely to be high because the majority of professional basketball players are tall. On the other hand, \(P(B|A)\) refers to the probability that an adult male is a professional basketball player given that he is known to be over 6ft. While many professional basketball players are indeed tall, not all tall individuals are professional basketball players.
03

Conclusion

Therefore, it is highly probable to suggest that \(P(A|B)\) is higher than \(P(B|A)\) because the probability of a professional basketball player being over 6ft is higher than the probability of a tall person being a professional basketball player.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a system consisting of four components, as pictured in the following diagram: Components 1 and 2 form a series subsystem, as do Components 3 and 4 . The two subsystems are connected in parallel. Suppose that \(P(1\) works \()=.9, P(2\) works \()=.9\), \(P(3\) works \()=.9\), and \(P(4\) works \()=.9\) and that the four components work independently of one another. a. The \(1-2\) subsystem works only if both components work. What is the probability of this happening? b. What is the probability that the \(1-2\) subsystem doesn't work? that the \(3-4\) subsystem doesn't work? c. The system won't work if the \(1-2\) subsystem doesn't work and if the \(3-4\) subsystem also doesn't work. What is the probability that the system won't work? that it will work? d. How would the probability of the system working change if a \(5-6\) subsystem were added in parallel with the other two subsystems? e. How would the probability that the system works change if there were three components in series in each of the two subsystems?

Of the 10,000 students at a certain university, 7000 have Visa cards, 6000 have MasterCards, and 5000 have both. Suppose that a student is randomly selected. a. What is the probability that the selected student has a Visa card? b. What is the probability that the selected student has both cards? c. Suppose you learn that the selected individual has a Visa card (was one of the 7000 with such a card). Now what is the probability that this student has both cards? d. Are the events has \(a\) Visa card and has a MasterCard independent? Explain. e. Answer the question posed in Part (d) if only 4200 of the students have both cards.

The National Public Radio show Car Talk has a feature called "The Puzzler." Listeners are asked to send in answers to some puzzling questions-usually about cars but sometimes about probability (which, of course, must account for the incredible popularity of the program!). Suppose that for a car question, 800 answers are submitted, of which 50 are correct. Suppose also that the hosts randomly select two answers from those submitted with replacement. a. Calculate the probability that both selected answers are correct. (For purposes of this problem, keep at least five digits to the right of the decimal.) b. Suppose now that the hosts select the answers at random but without replacement. Use conditional probability to evaluate the probability that both answers selected are correct. How does this probability compare to the one computed in Part (a)?

The article "Anxiety Increases for Airline Passengers After Plane Crash" (San Luis Obispo Tribune, November 13,2001 ) reported that air passengers have a 1 in 11 million chance of dying in an airplane crash. This probability was then interpreted as "You could fly every day for 26,000 years before your number was up." Comment on why this probability interprctation is mislcading.

Two individuals, \(A\) and \(B\), are finalists for a chess championship. They will play a sequence of games, each of which can result in a win for \(\mathrm{A}\), a win for \(\mathrm{B}\), or a draw. Suppose that the outcomes of successive games are independent, with \(P(\) A wins game \()=.3, P(\) B wins game \()=.2\), and \(P(\) draw \()=.5 .\) Each time a player wins a game, he earns 1 point and his opponent earns no points. The first player to win 5 points wins the championship. For the sake of simplicity, assume that the championship will end in a draw if both players obtain 5 points at the same time. a. What is the probability that A wins the championship in just five games? b. What is the probability that it takes just five games to obtain a champion? c. If a draw earns a half-point for each player, describe how you would perform a simulation to estimate \(P(\) A wins the championship). d. If neither player earns any points from a draw, would the simulation in Part (c) take longer to perform? Explain your reasoning.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free