Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The newspaper article "Folic Acid Might Reduce Risk of Down Syndrome" (USA Today, September 29 , 1999) makes the following statement: "Older women are at a greater risk of giving birth to a baby with Down Syndrome than are younger women. But younger women are more fertile, so most children with Down Syndrome are born to mothers under \(30 .\) " Let \(D=\) event that a randomly selected baby is born with Down Syndrome and \(Y=\) event that a randomly selected baby is born to a young mother (under age 30 ). For each of the following probability statements, indicate whether the statement is consistent with the quote from the article, and if not, explain why not. a. \(P(D \mid Y)=.001, \quad P\left(D \mid Y^{C}\right)=.004, \quad P(Y)=.7\) b. \(P(D \mid Y)=.001, \quad P\left(D \mid Y^{C}\right)=.001, \quad P(Y)=.7\) c. \(P(D \mid Y)=.004, \quad P\left(D \mid Y^{C}\right)=.004, \quad P(Y)=.7\) d. \(P(D \mid Y)=.001, \quad P\left(D \mid Y^{C}\right)=.004, \quad P(Y)=.4\) e. \(P(D \mid Y)=.001, \quad P\left(D \mid Y^{C}\right)=.001, \quad P(Y)=.4\) f. \(P(D \mid Y)=.004, \quad P\left(D \mid Y^{C}\right)=.004, \quad P(Y)=.4\)

Short Answer

Expert verified
Only statement a is consistent with the quote from the article. All other statements (b, c, d, e, f) are inconsistent because they either have equal risk of Down Syndrome for both young and old mothers, or the likelihood of a baby being born to a young mother is less than that of an old mother.

Step by step solution

01

Analyzing Statement a

The given statement shows \(P(D \mid Y)=.001, P\left(D \mid Y^{C}\right)=.004, P(Y)=.7\). Here, the probability of Down Syndrome for babies born to younger mothers is less than the probability for babies born to older mothers, and the probability of a baby being born to a young mother is more than the baby being born to an older mother. Therefore, this is consistent with the quote.
02

Analyzing Statement b

The given statement shows \(P(D \mid Y)=.001, P\left(D \mid Y^{C}\right)=.001, P(Y)=.7\). Here, the probability of Down Syndrome for babies born to younger mothers is the same as the probability for babies born to older mothers. This conflicts with the quote that states the risk is higher for older women, so it is inconsistent.
03

Analyzing Statement c

The given statement shows \(P(D \mid Y)=.004, P\left(D \mid Y^{C}\right)=.004, P(Y)=.7\). Here again, the probability of Down Syndrome for babies born to younger mothers is the same as for babies born to older mothers. Since it conflicts with the fact that the risk is higher for older women, it is inconsistent.
04

Analyzing Statement d

The given statement shows \(P(D \mid Y)=.001, P\left(D \mid Y^{C}\right)=.004, P(Y)=.4\). Here, the probability of Down Syndrome for babies born to younger mothers is less than the probability for babies born to older mothers. However, the probability a baby being born to a young mother is less than the mother being older which contradicts the assumption in the article. Therefore, this is inconsistent.
05

Analyzing Statement e

The given statement shows \(P(D \mid Y)=.001, P\left(D \mid Y^{C}\right)=.001, P(Y)=.4\). In this case, the probabilities of Down Syndrome for babies born to younger and older mothers are the same which contradicts the article. Moreover, the total probability of a baby being born to a young mother is less than being born to an older mother. Thus, it is inconsistent.
06

Analyzing Statement f

The given statement shows \(P(D \mid Y)=.004, P\left(D \mid Y^{C}\right)=.004, P(Y)=.4\). Here, the probabilities of Down Syndrome for babies born to younger and older mothers are equal, and the total probability of a baby being born to a young mother is less than being born to an older mother. This statement is inconsistent with the article's assumptions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Of the 10,000 students at a certain university, 7000 have Visa cards, 6000 have MasterCards, and 5000 have both. Suppose that a student is randomly selected. a. What is the probability that the selected student has a Visa card? b. What is the probability that the selected student has both cards? c. Suppose you learn that the selected individual has a Visa card (was one of the 7000 with such a card). Now what is the probability that this student has both cards? d. Are the events has \(a\) Visa card and has a MasterCard independent? Explain. e. Answer the question posed in Part (d) if only 4200 of the students have both cards.

A library has five copies of a certain textbook on reserve of which two copies ( 1 and 2) are first printings and the other three \((3,4\), and 5 ) are second printings. A student examines these books in random order, stopping only when a second printing has been selected. a. Display the possible outcomes in a tree diagram. b. What outcomes are contained in the event \(A\), that exactly one book is examined before the chance experiment terminates? c. What outcomes are contained in the event \(C\), that the chance experiment terminates with the examination of book \(5 ?\)

A transmitter is sending a message using a binary code, namely, a sequence of 0's and 1's. Each transmitted bit \((0\) or 1\()\) must pass through three relays to reach the receiver. At each relay, the probability is \(.20\) that the bit sent on is different from the bit received (a reversal). Assume that the relays operate independently of one another: transmitter \(\rightarrow\) relay \(1 \rightarrow\) relay \(2 \rightarrow\) relay \(3 \rightarrow\) receiver a. If a 1 is sent from the transmitter, what is the probability that a 1 is sent on by all three relays? b. If a 1 is sent from the transmitter, what is the probability that a 1 is received by the receiver? (Hint: The eight experimental outcomes can be displayed on a tree diagram with three generations of branches, one generation for each relay.)

In a school machine shop, \(60 \%\) of all machine breakdowns occur on lathes and \(15 \%\) occur on drill presses. Let \(E\) denote the event that the next machine breakdown is on a lathe, and let \(F\) denote the event that a drill press is the next machine to break down. With \(P(E)=.60\) and \(P(F)=.15\), calculate: a. \(P\left(E^{C}\right)\) b. \(P(E \cup F)\) c. \(P\left(E^{C} \cap F^{C}\right)\)

The Los Angeles Times (June 14,1995 ) reported that the U.S. Postal Service is getting speedier, with higher overnight on-time delivery rates than in the past. The Price Waterhouse accounting firm conducted an independent audit by seeding the mail with letters and recording ontime delivery rates for these letters. Suppose that the results were as follows (these numhers are fictitions hut are compatible with summary values given in the article): $$ \begin{array}{lcc} & \begin{array}{l} \text { Number } \\ \text { of Letters } \\ \text { Mailed } \end{array} & \begin{array}{l} \text { Number of } \\ \text { Lefters Arriving } \\ \text { on Time } \end{array} \\ \hline \text { Los Angeles } & 500 & 425 \\ \text { New York } & 500 & 415 \\ \text { Washington, D.C. } & 500 & 405 \\ \text { Nationwide } & 6000 & 5220 \\ & & \\ \hline \end{array} $$ Use the given information to estimate the following probabilities: a. The probability of an on-time delivery in Los Angeles b. The probability of late delivery in Washington, D.C. c. The probability that two letters mailed in New York are both delivered on time d. The probability of on-time delivery nationwide

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free