Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The student council for a school of science and math has one representative from each of the five academic departments: biology (B), chemistry (C), mathematics (M), physics (P), and statistics (S). Two of these students are to be randomly selected for inclusion on a university-wide student committee (by placing five slips of paper in a bowl, mixing, and drawing out two of them). a. What are the 10 possible outcomes (simple events)? b. From the description of the selection process, all outcomes are equally likely; what is the probability of each simple event? c. What is the probability that one of the committee members is the statistics department representative? d. What is the probability that both committee members come from laboratory science departments?

Short Answer

Expert verified
a. The 10 possible outcomes are: 'BC', 'BM', 'BP', 'BS', 'CM', 'CP', 'CS', 'MP', 'MS', 'PS'. b. The probability of each simple event is 0.1. c. The probability that one of the committee members is the statistics department representative is 0.4. d. The probability that both committee members come from laboratory science departments is 0.6.

Step by step solution

01

Listing All Possible Outcomes

Identify all the possible combinations or outcomes of selecting 2 representatives from the 5 departments. Use the combination formula by which number of ways to choose 'k' from 'n' objects is denoted as \(C(n, k) = \frac{n!}{k!(n-k)!}\). For this case, \(C(5, 2) =10\), let's list out the 10 possible outcomes :\['BC', 'BM', 'BP', 'BS', 'CM', 'CP', 'CS', 'MP', 'MS', 'PS'\]
02

Determine The Probability Of Each Simple Event

Let A be the set of all possible outcomes then the probability of A happening is 1. The probability of each case is equal, hence each individual pair has a 1/10 chance of being chosen.
03

Calculating the probability of having a representative from the statistics department

Find the number of pairs that include the Statistics (S) department representative. From the list, you can see that 4 pairs contain 'S'. Hence the probability of drawing a Statistics representative is 4 out of 10, or 0.4.
04

Computing the Probability That Committee Members Come From Laboratory Science Departments

Here, the Laboratory Science departments are considered to be Biology (B) and Chemistry (C). Hence we're looking for pairs that includes either B or C, or both. The combinations which satisfy this are: 'BC', 'BM', 'BP', 'BS', 'CM', 'CP'. Therefore, the probability that both committee members come from laboratory science departments is 6/10 or 0.6.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Many fire stations handle emergency calls for medical assistance as well as calls requesting firefighting equipment. A particular station says that the probability that an incoming call is for medical assistance is \(.85 .\) This can be expressed as \(P(\) call is for medical assistance \()=.85\). a. Give a relative frequency interpretation of the given probability. b. What is the probability that a call is not for medical assistance? c. Assuming that successive calls are independent of one another, calculate the probability that two successive calls will both be for medical assistance. d. Still assuming independence, calculate the prohahility that for two successive calls, the first is for medical assistance and the second is not for medical assistance. e. Still assuming independence, calculate the probability that exactly one of the next two calls will be for medical assistance. (Hint: There are two different possibilities. The one call for medical assistance might be the first call, or it might be the second call.) f. Do you think that it is reasonable to assume that the requests made in successive calls are independent? Explain.

A radio station that plays classical music has a "by request" program each Saturday evening. The percentages of requests for composers on a particular night are as follows: \(\begin{array}{lr}\text { Bach } & 5 \% \\ \text { Beethoven } & 26 \% \\\ \text { Brahms } & 9 \% \\ \text { Dvorak } & 2 \% \\ \text { Mendelssohn } & 3 \% \\ \text { Mozart } & 21 \% \\ \text { Schubert } & 12 \% \\ \text { Schumann } & 7 \% \\ \text { Tchaikovsky } & 14 \% \\ \text { Wagner } & 1 \%\end{array}\) Suppose that one of these requests is to be selected at random. a. What is the probability that the request is for one of the three \(\mathrm{B}^{\prime}\) s? b. What is the probability that the request is not for one of the two S's? c. Neither Bach nor Wagner wrote any symphonies. What is the probability that the request is for a composer who wrote at least one symphony?

A shipment of 5000 printed circuit boards contains 40 that are defective. Two boards will be chosen at random, without replacement. Consider the two events \(E_{1}=\) event that the first board selected is defective and \(E_{2}=\) event that the second board selected is defective. a. Are \(E_{1}\) and \(E_{2}\) dependent events? Explain in words. b. Let not \(E_{1}\) be the event that the first board selected is not defective (the event \(E_{1}^{C}\) ). What is \(P\left(\right.\) not \(\left.E_{1}\right)\) ? c. How do the two probabilities \(P\left(E_{2} \mid E_{1}\right)\) and \(P\left(E_{2} \mid\right.\) not \(\left.E_{1}\right)\) compare? d. Based on your answer to Part (c), would it be reasonable to view \(E_{1}\) and \(E_{2}\) as approximately independent?

Define the term chance experiment, and give an example of a chance experiment with four possible outcomes.

The article "Birth Beats Long Odds for Leap Year Mom, Baby" (San Luis Obispo Tribune, March 2, 1996) reported that a leap year baby (someone born on February 29 ) became a leap year mom when she gave birth to a baby on February \(29,1996 .\) The article stated that a hospital spokesperson said that the probability of a leap year baby giving birth on her birthday was one in \(2.1\) million (approximately .00000047). a. In computing the given probability, the hospital spokesperson used the fact that a leap day occurs only once in 1461 days. Write a few sentences explaining how the hospital spokesperson computed the stated probability. b. To compute the stated probability, the hospital spokesperson had to assume that the birth was equally likely to occur on any of the 1461 days in a four- year period. Do you think that this is a reasonable assumption? Explain. c. Based on your answer to Part (b), do you think that the probability given by the hospital spokesperson is too small, about right, or too large? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free