Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Refer to the following information on births in the United States over a given period of time: $$ \begin{array}{lr} \text { Type of Birth } & \text { Number of Births } \\ \hline \text { Single birth } & 41,500,000 \\ \text { Twins } & 500,000 \\ \text { Triplets } & 5000 \\ \text { Quadruplets } & 100 \\ & \\ \hline \end{array} $$ Use this information to approximate the probability that a randomly selected pregnant woman who reaches full term a. Delivers twins b. Delivers quadruplets c. Gives birth to more than a single child

Short Answer

Expert verified
The approximate probabilities are \(P(Twins) = 0.0119\), \(P(Quadruplets) = 0.00000238\), and \(P(More than one child) = 0.0120\)

Step by step solution

01

Calculate Total Number of Births

First, calculate the total number of births. This will be the sum of single births, twins, triplets, and quadruplets, i.e., \(41,500,000 + 500,000 + 5,000 + 100 = 42,005,100.\)
02

Calculate Probabilities

The probability can be calculated as the ratio of the number of such births to the total number of births. For example, the probability of having twins is calculated as \(P(twins) = \frac{Number\:of\:Twins}{Total\:Number\:of\:Births} = \frac{500,000}{42,005,100}. Similarly, we calculate the probabilities for quadruplets and for giving birth to more than a single child.
03

Calculate Probability of more than one child

The probability of giving birth to more than one child involves twins, triplets and quadruplets. Therefore, calculate the sum of twins, triplets, and quadruplets and divide by total births i.e., \(P(more\:than\:one\:child)=\frac{Number\:of\:Twins+Number\:of\:Triplets+Number\:of\:Quadruplets}{Total\:Number\:of\:Births}=\frac{500,000+5,000+100}{42,005,100}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

According to a study conducted by a risk assessment firm (Associated Press, December 8,2005 ), drivers residing within one mile of a restaurant are \(30 \%\) more likely to be in an accident in a given policy year. Consider the following two events: \(A=\) event that a driver has an accident during a policy year \(R=\) event that a driver lives within one mile of a restaurant Which of the following four probability statements is consistent with the findings of this survey? Justify your choice. i. \(P(A \mid R)=.3\) iii. \(\frac{P(A \mid R)}{P\left(A \mid R^{C}\right)}=.3\) ii. \(P\left(A \mid R^{C}\right)=.3 \quad\) iv. \(\frac{P(A \mid R)-P\left(A \mid R^{C}\right)}{P\left(A \mid R^{C}\right)}=.3\)

The general addition rule for three events states that $$ \begin{aligned} P(A \text { or } B \text { or } C)=& P(A)+P(B)+P(C) \\ &-P(A \text { and } B)-P(A \text { and } C) \\ &-P(B \text { and } C)+P(A \text { and } B \text { and } C) \end{aligned} $$ A new magazine publishes columns entitled "Art" (A), "Books" (B), and "Cinema" (C). Suppose that \(14 \%\) of all subscribers read A, \(23 \%\) read \(\mathrm{B}, 37 \%\) read \(\mathrm{C}, 8 \%\) read \(\mathrm{A}\) and \(\mathrm{B}, 9 \%\) read \(\mathrm{A}\) and \(\mathrm{C}, 13 \%\) read \(\mathrm{B}\) and \(\mathrm{C}\), and \(5 \%\) read all three columns. What is the probability that a randomly selected subscriber reads at least one of these three columns?

The student council for a school of science and math has one representative from each of the five academic departments: biology (B), chemistry (C), mathematics (M), physics (P), and statistics (S). Two of these students are to be randomly selected for inclusion on a university-wide student committee (by placing five slips of paper in a bowl, mixing, and drawing out two of them). a. What are the 10 possible outcomes (simple events)? b. From the description of the selection process, all outcomes are equally likely; what is the probability of each simple event? c. What is the probability that one of the committee members is the statistics department representative? d. What is the probability that both committee members come from laboratory science departments?

According to a study released by the federal Substance Abuse and Mental Health Services Administration (Knight Ridder Tribune, September 9,1999 ), approximately \(8 \%\) of all adult full-time workers are drug users and approximately \(70 \%\) of adult drug users are employed full-time. a. Is it possible for both of the reported percentages to be correct? Explain. b. Define the events \(D\) and \(E\) as \(D=\) event that a randomly selected adult is a drug user and \(E=\) event that a randomly selected adult is employed full- time. What are the estimated values of \(P(D \mid E)\) and \(P(E \mid D) ?\) c. Is it possible to determine \(P(D)\), the probability that a randomly selected adult is a drug user, from the information given? If not, what additional information would be needed?

In a school machine shop, \(60 \%\) of all machine breakdowns occur on lathes and \(15 \%\) occur on drill presses. Let \(E\) denote the event that the next machine breakdown is on a lathe, and let \(F\) denote the event that a drill press is the next machine to break down. With \(P(E)=.60\) and \(P(F)=.15\), calculate: a. \(P\left(E^{C}\right)\) b. \(P(E \cup F)\) c. \(P\left(E^{C} \cap F^{C}\right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free