Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

N.Y. Lottery Numbers Come Up 9-1-1 on 9/11" was the headline of an article that appeared in the San Francisco Chronicle (September 13,2002 ). More than 5600 people had selected the sequence \(9-1-1\) on that date, many more than is typical for that sequence. A professor at the University of Buffalo is quoted as saying, "I'm a bit surprised, but I wouldn't characterize it as bizarre. It's randomness. Every number has the same chance of coming up." a. The New York state lottery uses balls numbered \(0-9\) circulating in three separate bins. To select the winning sequence, one ball is chosen at random from each bin. What is the probability that the sequence \(9-1-1\) is the sequence selected on any particular day? (Hint: It may be helpful to think about the chosen sequence as a threedigit number.) b. What approach (classical, relative frequency, or subjective) did you use to obtain the probability in Part (a)? Explain.

Short Answer

Expert verified
The probability of drawing the sequence 9-1-1 in the lottery on any given day is 0.001 (or 1 in 1000). The approach used to calculate this probability was the classical approach.

Step by step solution

01

Calculate the probability for one draw

Accept that any ball chosen from a bin is a singular and independent event. As there are 10 balls (0-9) in each bin, the probability of drawing any particular number (e.g. 9, 1, or 1) is \(1/10 = 0.1\). Therefore, the probability of drawing a 9 from one bin, a 1 from another, and a 1 from the third is \(0.1 \times 0.1 \times 0.1\).
02

Multiply the probabilities of each draw

Given that these draws are independent events, the probabilities multiply. Thus, \(0.1 \times 0.1 \times 0.1 = 0.001\). This is the probability of drawing the sequence 9-1-1.
03

Identify the approach used

To answer part (b), analyzing how the probability was obtained, recognize you used the classical approach because there was a finite, equally likely set of outcomes and the probability was calculated theoretically.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two individuals, \(A\) and \(B\), are finalists for a chess championship. They will play a sequence of games, each of which can result in a win for \(\mathrm{A}\), a win for \(\mathrm{B}\), or a draw. Suppose that the outcomes of successive games are independent, with \(P(\) A wins game \()=.3, P(\) B wins game \()=.2\), and \(P(\) draw \()=.5 .\) Each time a player wins a game, he earns 1 point and his opponent earns no points. The first player to win 5 points wins the championship. For the sake of simplicity, assume that the championship will end in a draw if both players obtain 5 points at the same time. a. What is the probability that A wins the championship in just five games? b. What is the probability that it takes just five games to obtain a champion? c. If a draw earns a half-point for each player, describe how you would perform a simulation to estimate \(P(\) A wins the championship). d. If neither player earns any points from a draw, would the simulation in Part (c) take longer to perform? Explain your reasoning.

6.12 Consider a Venn diagram picturing two events \(A\) and \(B\) that are not disjoint. a. Shade the event \((A \cup B)^{C} .\) On a separate Venn diagram shade the event \(A^{C} \cup B^{C} .\) How are these two events related? b. Shade the event \((A \cap B)^{C} .\) On a separate Venn diagram shade the event \(A^{C} \cup B^{C}\). How are these two events related? (Note: These two relationships together are called DeMorgan's laws.)

Suppose that an individual is randomly selected from the population of all adult males living in the United States. Let \(A\) be the event that the selected individual is oyer 6 ft in height, and let \(B\) be the event that the selected individual is a professional basketball player. Which do you think is larger, \(P(A \mid B)\) or \(P(B \mid A) ?\) Why?

The newspaper article "Folic Acid Might Reduce Risk of Down Syndrome" (USA Today, September 29 , 1999) makes the following statement: "Older women are at a greater risk of giving birth to a baby with Down Syndrome than are younger women. But younger women are more fertile, so most children with Down Syndrome are born to mothers under \(30 .\) " Let \(D=\) event that a randomly selected baby is born with Down Syndrome and \(Y=\) event that a randomly selected baby is born to a young mother (under age 30 ). For each of the following probability statements, indicate whether the statement is consistent with the quote from the article, and if not, explain why not. a. \(P(D \mid Y)=.001, \quad P\left(D \mid Y^{C}\right)=.004, \quad P(Y)=.7\) b. \(P(D \mid Y)=.001, \quad P\left(D \mid Y^{C}\right)=.001, \quad P(Y)=.7\) c. \(P(D \mid Y)=.004, \quad P\left(D \mid Y^{C}\right)=.004, \quad P(Y)=.7\) d. \(P(D \mid Y)=.001, \quad P\left(D \mid Y^{C}\right)=.004, \quad P(Y)=.4\) e. \(P(D \mid Y)=.001, \quad P\left(D \mid Y^{C}\right)=.001, \quad P(Y)=.4\) f. \(P(D \mid Y)=.004, \quad P\left(D \mid Y^{C}\right)=.004, \quad P(Y)=.4\)

Consider the following information about travelers on vacation: \(40 \%\) check work email, \(30 \%\) use a cell phone to stay connected to work, \(25 \%\) bring a laptop with them on vacation, \(23 \%\) both check work email and use a cell phone to stay connected, and \(51 \%\) neither check work email nor use a cell phone to stay connected nor bring a laptop. In addition \(88 \%\) of those who bring a laptop also check work email and \(70 \%\) of those who use a cell phone to stay connected also bring a laptop. With \(E=\) event that a traveler on vacation checks work email, \(C=\) event that a traveler on vacation uses a cell phone to stay connected, and \(L=\) event that a traveler on vacation brought a laptop, use the given information to determine the following probabilities. A Venn diagram may help. a. \(P(E)\) b. \(P(C)\) c. \(P(L)\) d. \(P(E\) and \(C)\) e. \(P\left(E^{C}\right.\) and \(C^{C}\) and \(L^{C}\) ) f. \(P(\) Eor C or \(L\) ) g. \(P(E \mid L)\) j. \(P(E\) and \(L)\) h. \(P(L \mid C)\) k. \(P(C\) and \(L)\) i. \(P(E\) and \(C\) and \(L)\) 1\. \(P(C \mid E\) and \(L)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free