Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Insurance status - covered (C) or not covered (N) \- is determined for each individual arriving for treatment at a hospital's emergency room. Consider the chance experiment in which this determination is made for two randomly selected patients. The simple events are \(O_{1}=(\mathrm{C}, \mathrm{C})\) \(O_{2}=(\mathrm{C}, \mathrm{N}), O_{3}=(\mathrm{N}, \mathrm{C})\), and \(O_{4}=(\mathrm{N}, \mathrm{N}) .\) Suppose that probabilities are \(P\left(O_{1}\right)=.81, P\left(O_{2}\right)=.09, P\left(O_{3}\right)=.09\), and \(P\left(O_{4}\right)=.01\). a. What outcomes are contained in \(A\), the event that at most one patient is covered, and what is \(P(A)\) ? b. What outcomes are contained in \(B\), the event that the two patients have the same status with respect to coverage, and what is \(P(B)\) ?

Short Answer

Expert verified
For the event that at most one patient is covered, the outcomes are \(O_{2}, O_{3}, O_{4}\), and the probability is 0.19. For the event that both patients have the same coverage status, the outcomes are \(O_{1}, O_{4}\), and the probability is 0.82.

Step by step solution

01

Determine the outcomes for event A

Event A is described as 'at most one patient is covered.' This involves two simple events, where both patients are not covered, i.e. \(O_{4}=(\mathrm{N}, \mathrm{N})\) and one of the patients is covered i.e. \(O_{2}=(\mathrm{C}, \mathrm{N})\) and \(O_{3}=(\mathrm{N}, \mathrm{C})\). Therefore, \(A=\{O_{2}, O_{3}, O_{4}\}\)
02

Calculate the Probability of event A

The probability of event A, \(P(A)\), which is the sum of the probabilities of the simple events \(O_{2}, O_{3}, O_{4}\), i.e. \(P(A) = P(O_{2}) + P(O_{3}) + P(O_{4}) = 0.09 + 0.09 + 0.01 = 0.19.
03

Determine the outcomes for event B

Event B is described as 'the two patients have the same status with respect to coverage.' This involves two simple events, where both patients are not covered, i.e. \(O_{4}=(\mathrm{N}, \mathrm{N})\) or both are covered i.e. \(O_{1}=(\mathrm{C}, \mathrm{C})\). Therefore, \(B=\{O_{1}, O_{4}\}\)
04

Calculate the Probability of event B

The probability of event B, \(P(B)\), which is the sum of the probabilities of the simple events \(O_{1}, O_{4}\), i.e. \(P(B) = P(O_{1}) + P(O_{4}) = 0.81 + 0.01 = 0.82 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A transmitter is sending a message using a binary code, namely, a sequence of 0's and 1's. Each transmitted bit \((0\) or 1\()\) must pass through three relays to reach the receiver. At each relay, the probability is \(.20\) that the bit sent on is different from the bit received (a reversal). Assume that the relays operate independently of one another: transmitter \(\rightarrow\) relay \(1 \rightarrow\) relay \(2 \rightarrow\) relay \(3 \rightarrow\) receiver a. If a 1 is sent from the transmitter, what is the probability that a 1 is sent on by all three relays? b. If a 1 is sent from the transmitter, what is the probability that a 1 is received by the receiver? (Hint: The eight experimental outcomes can be displayed on a tree diagram with three generations of branches, one generation for each relay.)

USA Today (June 6,2000 ) gave information on seat belt usage by gender. The proportions in the following table are based on a survey of a large number of adult men and women in the United States: $$ \begin{array}{l|cc} \hline & \text { Male } & \text { Female } \\ \hline \text { Uses Seat Belts Regularly } & .10 & .175 \\ \begin{array}{l} \text { Does Not Use Seat Belts } \\ \text { Regularly } \end{array} & .40 & .325 \\ \hline \end{array} $$ Assume that these proportions are representative of adults in the United States and that a U.S. adult is selected at random. a. What is the probability that the selected adult regularly uses a seat belt? b. What is the probability that the selected adult regularly uses a seat belt given that the individual selected is male? c. What is the probability that the selected adult does not use a seat belt regularly given that the selected individual is female? d. What is the probability that the selected individual is female given that the selected individual does not use a seat belt regularly? e. Are the probabilities from Parts (c) and (d) equal? Write a couple of sentences explaining why this is so.

The general addition rule for three events states that $$ \begin{aligned} P(A \text { or } B \text { or } C)=& P(A)+P(B)+P(C) \\ &-P(A \text { and } B)-P(A \text { and } C) \\ &-P(B \text { and } C)+P(A \text { and } B \text { and } C) \end{aligned} $$ A new magazine publishes columns entitled "Art" (A), "Books" (B), and "Cinema" (C). Suppose that \(14 \%\) of all subscribers read A, \(23 \%\) read \(\mathrm{B}, 37 \%\) read \(\mathrm{C}, 8 \%\) read \(\mathrm{A}\) and \(\mathrm{B}, 9 \%\) read \(\mathrm{A}\) and \(\mathrm{C}, 13 \%\) read \(\mathrm{B}\) and \(\mathrm{C}\), and \(5 \%\) read all three columns. What is the probability that a randomly selected subscriber reads at least one of these three columns?

According to a study conducted by a risk assessment firm (Associated Press, December 8,2005 ), drivers residing within one mile of a restaurant are \(30 \%\) more likely to be in an accident in a given policy year. Consider the following two events: \(A=\) event that a driver has an accident during a policy year \(R=\) event that a driver lives within one mile of a restaurant Which of the following four probability statements is consistent with the findings of this survey? Justify your choice. i. \(P(A \mid R)=.3\) iii. \(\frac{P(A \mid R)}{P\left(A \mid R^{C}\right)}=.3\) ii. \(P\left(A \mid R^{C}\right)=.3 \quad\) iv. \(\frac{P(A \mid R)-P\left(A \mid R^{C}\right)}{P\left(A \mid R^{C}\right)}=.3\)

Suppose that a box contains 25 bulbs, of which 20 are good and the other 5 are defective. Consider randoml selecting three bulbs without replacement. Let \(E\) denote the event that the first bulb selected is good, \(F\) be the event that the second bulb is good, and \(G\) represent the event that the third bulb selected is good. a. What is \(P(E)\) ? b. What is \(P(F \mid E)\) ? c. What is \(P(G \mid E \cap F)\) ? d. What is the probability that all three selected bulbs are good?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free