Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The sales manager of a large company selected a random sample of \(n=10\) salespeople and determined for each one the values of \(x=\) years of sales experience and \(y=\) annual sales (in thousands of dollars). A scatterplot of the resulting \((x, y)\) pairs showed a marked linear pattern. a. Suppose that the sample correlation coefficient is \(r=\) \(.75\) and that the average annual sales is \(\bar{y}=100\). If a particular salesperson is 2 standard deviations above the mean in terms of experience, what would you predict for that person's annual sales? b. If a particular person whose sales experience is \(1.5\) standard deviations below the average experience is predicted to have an annual sales value that is 1 standard deviation below the average annual sales, what is the value of \(r\) ?

Short Answer

Expert verified
a. The predicted annual sales for the salesperson would be 1.5 standard deviations above the average annual sales. b. The correlation \(r\) would be 0.67.

Step by step solution

01

Predicting the Annual Sales

The sample correlation coefficient \(r\) is used to show the strength and direction of the linear relationship between the two variables. Here, \(r = 0.75\) suggests a strong positive relationship. The calculation implies that a deviation in sales experience leads to \(r = 0.75\) times deviation in the annual sales. Given that a salesperson is 2 standard deviations above the mean in terms of experience, then the predicted annual sales would be \(2r = 0.75*2 = 1.5\) standard deviations above the average annual sales.
02

Calculating the Annual Sales

If the average annual sales is \(\bar{y}=100\), and the deviation is 1.5 standard deviations above the mean, then you would need to determine the standard deviation of the annual sales. Since we lack this information, we can only provide an answer in terms of standard deviations, which is 1.5 standard deviations above the mean.
03

Finding the Value of \(r\)

Given a person whose sales experience is \(1.5\) standard deviations below the average experience is predicted to have an annual sales value that is \(1\) standard deviation below the average annual sales. The correlation \(r\) can thus be calculated by the ratio of predicted standard deviation in annual sales to the standard deviation in experience, which implies \(r = \frac{-1}{-1.5} = 0.67\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The accompanying data resulted from an experiment in which weld diameter \(x\) and shear strength \(y\) (in pounds) were determined for five different spot welds on steel. A scatterplot shows a pronounced linear pattern. With \(\sum(x-\bar{x})=1000\) and \(\sum(x-\bar{x})(y-\bar{y})=8577\), the least-squares line is \(\hat{y}=-936.22+8.577 x\). \(\begin{array}{llllll}x & 200.1 & 210.1 & 220.1 & 230.1 & 240.0\end{array}\) \(\begin{array}{llllll}y & 813.7 & 785.3 & 960.4 & 1118.0 & 1076.2\end{array}\) a. Because \(1 \mathrm{lb}=0.4536 \mathrm{~kg}\), strength observations can be re-expressed in kilograms through multiplication by this conversion factor: new \(y=0.4536(\) old \(y) .\) What is the equation of the least-squares line when \(y\) is expressed in kilograms? b. More generally, suppose that each \(y\) value in a data set consisting of \(n(x, y)\) pairs is multiplied by a conversion factor \(c\) (which changes the units of measurement for \(y\) ). What effect does this have on the slope \(b\) (i.e., how does the new value of \(b\) compare to the value before conversion), on the intercept \(a\), and on the equation of the least-squares line? Verify your conjectures by using the given formulas for \(b\) and \(a\). (Hint: Replace \(y\) with \(c y\), and see what happens \- and remember, this conversion will affect \(\bar{y} .\) )

An article on the cost of housing in California that appeared in the San Luis Obispo Tribune (March 30,2001 ) included the following statement: "In Northern California, people from the San Francisco Bay area pushed into the Central Valley, benefiting from home prices that dropped on average \(\$ 4000\) for every mile traveled east of the Bay area." If this statement is correct, what is the slope of the least-squares regression line, \(\hat{y}=a+b x\), where \(y=\) house price (in dollars) and \(x=\) distance east of the Bay (in miles)? Explain.

Is the following statement correct? Explain why or why not. A correlation coefficient of 0 implies that no relationship exists between the two variables under study.

'The article "Reduction in Soluble Protein and Chlorophyll Contents in a Few Plants as Indicators of Automobile Exhaust Pollution" (International Journal of Environmental Studies [1983]: \(239-244\) ) reported the following data on \(x=\) distance from a highway (in meters) and \(y=\) lead content of soil at that distance (in parts per million): a. Use a statistical computer package to construct scatterplots of \(y\) versus \(x, y\) versus \(\log (x), \log (y)\) versus \(\log (x)\) and \(\frac{1}{y}\) versus \(\frac{1}{x}\). b. Which transformation considered in Part (a) does the best job of producing an approximately linear relationship? Use the selected transformation to predict lead content when distance is \(25 \mathrm{~m}\).

The data given in Example \(5.5\) on \(x=\) call-to-shock time (in minutes) and \(y=\) survival rate (percent) were used to compute the equation of the least- squares line, which was $$ \hat{y}=101.36-9.30 x $$ The newspaper article "FDA OKs Use of Home Defibrillators" (San Luis Obispo Tribune, November 13,2002 ) reported that "every minute spent waiting for paramedics to arrive with a defibrillator lowers the chance of survival by 10 percent." Is this statement consistent with the given least-squares line? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free