Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Explain why it can be dangerous to use the leastsquares line to obtain predictions for \(x\) values that are substantially larger or smaller than those contained in the sample.

Short Answer

Expert verified
Using the least squares line helps predict one variable based on another, but extrapolation, i.e., predicting for values outside the sample range, is dangerous. That's because the linearity assumption may not hold, all influencing factors may not be captured, and prediction errors are larger outside the sample range.

Step by step solution

01

Understanding the Role of Least Squares Line

The least squares line, also known as the line of best fit, is used in regression analysis to predict the value of one variable (dependent variable) based on the value of another variable (independent variable). It works under the assumption that there is a linear relationship between these variables.
02

Conceptualizing Out-of-Sample Predictions

An out-of-sample prediction refers to using the regression line (least squares line) to predict the dependent variable for values of the independent variable that are not within the range of the sample data. If \(x\) values are substantially larger or smaller than those of in the sample, it means the prediction is extrapolated far beyond the range of observed data.
03

Explaining the Dangers of Extrapolation

Predicting values for a variable outside the range of sample data is known as extrapolation. It can be dangerous for several reasons: 1) The assumption of linearity might not hold outside the sample range. Real-world relationships can be non-linear, and trends may change. 2) The sample data may not incorporate all factors affecting the relationship, which may be more prevalent outside the sample range. 3) Errors of estimates are larger and predictions are less reliable outside the sample range. Therefore, using the least squares line to obtain predictions for \(x\) values substantially larger or smaller than those in the sample can be risky and misleading.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "Cost-Effectiveness in Public Education" (Chance [1995]: \(38-41\) ) reported that for a regression of \(y=\) average SAT score on \(x=\) expenditure per pupil, based on data from \(n=44\) New Jersey school districts, \(a=766, b=0.015, r^{2}=.160\), and \(s_{e}=53.7\) a. One observation in the sample was \((9900,893)\). What average SAT score would you predict for this district, and what is the corresponding residual? b. Interpret the value of \(s_{e}\). c. How effectively do you think the least-squares line summarizes the relationship between \(x\) and \(y ?\) Explain your reasoning.

The following data on \(x=\) soil depth (in centimeters) and \(y=\) percentage of montmorillonite in the soil were taken from a scatterplot in the paper "Ancient Maya Drained Field Agriculture: Its Possible Application Today in the New River Floodplain, Belize, C.A." (Agricultural Ecosystems and Environment \([1984]: 67-84)\) : $$ \begin{array}{lllllllr} x & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\ y & 58 & 34 & 32 & 30 & 28 & 27 & 22 \end{array} $$ a. Draw a scatterplot of \(y\) versus \(x\). b. The equation of the least-squares line is \(\hat{y}=64.50-\) \(0.45 x\). Draw this line on your scatterplot. Do there appear to be any large residuals? c. Compute the residuals, and construct a residual plot. Are there any unusual features in the plot?

An auction house released a list of 25 recently sold paintings. Eight artists were represented in these sales. The sale price of each painting appears on the list. Would the correlation coefficient be an appropriate way to summarize the relationship between artist \((x)\) and sale price (y)? Why or why not?

The article "The Epiphytic Lichen Hypogymnia physodes as a Bioindicator of Atmospheric Nitrogen and Sulphur Deposition in Norway" (Environmental Monitoring and Assessment [1993]: \(27-47\) ) gives the following data (read from a graph in the paper) on \(x=\mathrm{NO}_{3}\) wet deposition (in grams per cubic meter) and \(y=\) lichen (\% dry weight): a. What is the equation of the least-squares regression line? \(\quad \hat{y}=0.3651+0.9668 \mathrm{x}\) b. Predict lichen dry weight percentage for an \(\mathrm{NO}_{3}\) depo sition of \(0.5 \mathrm{~g} / \mathrm{m}^{3}\).

The sample correlation coefficient between annual raises and teaching evaluations for a sample of \(n=353\) college faculty was found to be \(r=.11\) ("Determination of Faculty Pay: An Agency Theory Perspective," Academy of Management Joumal [1992]: 921-955). a. Interpret this value. b. If a straight line were fit to the data using least squares, what proportion of variation in raises could be attributed to the approximate linear relationship between raises and evaluations?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free