Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The paper "Postmortem Changes in Strength of Gastropod Shells" (Paleobiology [1992]: \(367-377\) ) included scatterplots of data on \(x=\) shell height (in centimeters) and \(y=\) breaking strength (in newtons) for a sample of \(n=38\) hermit crab shells. The least-squares line was \(\hat{y}=-275.1+244.9 x\) a. What are the slope and the intercept of this line? b. When shell height increases by \(1 \mathrm{~cm}\), by how much does breaking strength tend to change? c. What breaking strength would you predict when shell height is \(2 \mathrm{~cm} ?\) d. Does this approximate linear relationship appear to hold for shell heights as small as \(1 \mathrm{~cm} ?\) Explain.

Short Answer

Expert verified
a) The slope of the line is 244.9 and the intercept is -275.1. b) The breaking strength tends to increase by 244.9 newtons when the shell height increases by 1 cm. c) The breaking strength would be 214.7 newtons when shell height is 2 cm. d) The applicability of this model for smaller shell heights can only be determined with data on shells of such sizes.

Step by step solution

01

Identify the slope and intercept

The given least-squares line equation is \(\hat{y} = -275.1 + 244.9x\). In this equation, -275.1 is the intercept and 244.9 is the slope of the line.
02

Interpret the slope

The slope indicates the change in the dependent variable (\(y\)) for a one unit increase in the independent variable (\(x\)). In this case, for each 1 cm increase in shell height, the breaking strength increases by 244.9 newtons.
03

Predict breaking strength for a specific shell height

To predict the breaking strength when the shell height is 2 cm, we can substitute \(x = 2\) in the equation to get: \(\hat{y} = -275.1 + 244.9 * 2 = 214.7\) newtons.
04

Evaluate the applicability of the line for smaller shell heights

The approximation holds if our model consistently predicts accurate strengths for smaller shell heights. However, this can't be determined without data on shells with smaller heights. If the data indicates a linear relationship between shell height and breaking strength across all heights, then we can cautiously apply this model to smaller shells.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The accompanying data resulted from an experiment in which weld diameter \(x\) and shear strength \(y\) (in pounds) were determined for five different spot welds on steel. A scatterplot shows a pronounced linear pattern. With \(\sum(x-\bar{x})=1000\) and \(\sum(x-\bar{x})(y-\bar{y})=8577\), the least-squares line is \(\hat{y}=-936.22+8.577 x\). \(\begin{array}{llllll}x & 200.1 & 210.1 & 220.1 & 230.1 & 240.0\end{array}\) \(\begin{array}{llllll}y & 813.7 & 785.3 & 960.4 & 1118.0 & 1076.2\end{array}\) a. Because \(1 \mathrm{lb}=0.4536 \mathrm{~kg}\), strength observations can be re-expressed in kilograms through multiplication by this conversion factor: new \(y=0.4536(\) old \(y) .\) What is the equation of the least-squares line when \(y\) is expressed in kilograms? b. More generally, suppose that each \(y\) value in a data set consisting of \(n(x, y)\) pairs is multiplied by a conversion factor \(c\) (which changes the units of measurement for \(y\) ). What effect does this have on the slope \(b\) (i.e., how does the new value of \(b\) compare to the value before conversion), on the intercept \(a\), and on the equation of the least-squares line? Verify your conjectures by using the given formulas for \(b\) and \(a\). (Hint: Replace \(y\) with \(c y\), and see what happens \- and remember, this conversion will affect \(\bar{y} .\) )

An auction house released a list of 25 recently sold paintings. Eight artists were represented in these sales. The sale price of each painting appears on the list. Would the correlation coefficient be an appropriate way to summarize the relationship between artist \((x)\) and sale price (y)? Why or why not?

Explain why the slope \(b\) of the least-squares line always has the same sign (positive or negative) as does the sample correlation coefficient \(r\).

The sales manager of a large company selected a random sample of \(n=10\) salespeople and determined for each one the values of \(x=\) years of sales experience and \(y=\) annual sales (in thousands of dollars). A scatterplot of the resulting \((x, y)\) pairs showed a marked linear pattern. a. Suppose that the sample correlation coefficient is \(r=\) \(.75\) and that the average annual sales is \(\bar{y}=100\). If a particular salesperson is 2 standard deviations above the mean in terms of experience, what would you predict for that person's annual sales? b. If a particular person whose sales experience is \(1.5\) standard deviations below the average experience is predicted to have an annual sales value that is 1 standard deviation below the average annual sales, what is the value of \(r\) ?

Consider the four \((x, y)\) pairs \((0,0),(1,1),(1,-1)\), and \((2,0)\). a. What is the value of the sample correlation coefficient \(r ?\) b. If a fifth observation is made at the value \(x=6\), find alue of \(y\) for which \(r>.5\). c. If a fifth observation is made at the value \(x=6\), find â value of \(y\) for which \(r<.5\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free