Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The data given in Example \(5.5\) on \(x=\) call-to-shock time (in minutes) and \(y=\) survival rate (percent) were used to compute the equation of the least- squares line, which was $$ \hat{y}=101.36-9.30 x $$ The newspaper article "FDA OKs Use of Home Defibrillators" (San Luis Obispo Tribune, November 13,2002 ) reported that "every minute spent waiting for paramedics to arrive with a defibrillator lowers the chance of survival by 10 percent." Is this statement consistent with the given least-squares line? Explain.

Short Answer

Expert verified
Yes, the statement is approximately consistent with the given least square line. While the line suggests a survival rate decrease of 9.3% per minute, the article indicates a 10% decrease per minute. The figures are similar, hence approximate consistency can be inferred.

Step by step solution

01

Understand the Least-Squares Line

The least-squares line \(\hat{y}=101.36 - 9.30x\) acts as a predictive model for survival rate based on the call-to-shock time. The coefficient of \(x\) (-9.30) is significant because it denotes the rate of decrease in survival percentage for each additional minute the defibrillator is delayed.
02

Examine the Newspaper Statement

According to the statement in the newspaper article, every minute delay in the arrival of defibrillators lowers survival rate by 10%. It implies a decrease of 10 units in survival rate per minute, which corresponds to an assumed linear model with a slope of -10.
03

Compare the Two Statements

The two statements can now be compared. The newspaper statement suggests a decrease in survival rate at a rate of 10% per minute, while the computed least squares line suggests a decrease at a rate of 9.30% per minute. Although these values are not exactly the same, they are very close, suggesting an approximate agreement between the two.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An article on the cost of housing in California that appeared in the San Luis Obispo Tribune (March 30,2001 ) included the following statement: "In Northern California, people from the San Francisco Bay area pushed into the Central Valley, benefiting from home prices that dropped on average \(\$ 4000\) for every mile traveled east of the Bay area." If this statement is correct, what is the slope of the least-squares regression line, \(\hat{y}=a+b x\), where \(y=\) house price (in dollars) and \(x=\) distance east of the Bay (in miles)? Explain.

Data on high school GPA \((x)\) and first-year college GPA \((y)\) collected from a southeastern public research university can be summarized as follows ("First-Year Academic Success: A Prediction Combining Cognitive and Psychosocial Variables for Caucasian and African American Students," Journal of College Student Development [1999]: \(599-605\) ): $$ \begin{array}{clc} n=2600 & \sum x=9620 & \sum y=7436 \\ \sum x y=27,918 & \sum x^{2}=36,168 & \sum y^{2}=23,145 \end{array} $$ a. Find the equation of the least-squares regression line. b. Interpret the value of \(b\), the slope of the least-squares line, in the context of this problem. c. What first-year GPA would you predict for a student with a \(4.0\) high school GPA?

Consider the four \((x, y)\) pairs \((0,0),(1,1),(1,-1)\), and \((2,0)\). a. What is the value of the sample correlation coefficient \(r ?\) b. If a fifth observation is made at the value \(x=6\), find alue of \(y\) for which \(r>.5\). c. If a fifth observation is made at the value \(x=6\), find â value of \(y\) for which \(r<.5\).

The article "That's Rich: More You Drink, More You Earn" (Calgary Herald, April 16,2002 ) reported that there was a positive correlation between alcohol consumption and income. Is it reasonable to conclude that increasing alcohol consumption will increase income? Give at least two reasons or examples to support your answer.

The paper "Effects of Canine Parvovirus (CPV) on Gray Wolves in Minnesota" (Journal of Wildlife Management \([1995]: 565-570\) ) summarized a regression of \(y=\) percentage of pups in a capture on \(x=\) percentage of \(\mathrm{CPV}\) prevalence among adults and pups. The equation of the least-squares line, based on \(n=10\) observations, was \(\hat{y}=62.9476-0.54975 x\), with \(r^{2}=.57\) a. One observation was \((25,70)\). What is the corresponding residual? b. What is the value of the sample correlation coefficient? c. Suppose that \(\mathrm{SSTo}=2520.0\) (this value was not given in the paper). What is the value of \(s_{e} ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free