Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The relationship between hospital patient-to-nurse ratio and various characteristics of job satisfaction and patient care has been the focus of a number of research studies. Suppose \(x=\) patient-to-nurse ratio is the predictor variable. For each of the following potential dependent variables, indicate whether you expect the slope of the least-squares line to be positive or negative and give a brief explanation for your choice. a. \(y=\) a measure of nurse's job satisfaction (higher values indicate higher satisfaction) b. \(y=\) a measure of patient satisfaction with hospital care (higher values indicate higher satisfaction) c. \(y=\) a measure of patient quality of care.

Short Answer

Expert verified
a. The slope for nurse's job satisfaction is expected to be negative. \b. The slope for patient satisfaction with hospital care is expected to be negative.\c. The slope for patient's quality of care is also predicted to be negative.

Step by step solution

01

Understand the relationship between variables

Identify and understand the concept of the patient-to-nurse ratio being the predictor or independent variable. Also grasp the fact that the measures of nurse's job satisfaction, patient satisfaction with hospital care, and patient's quality of care are the dependent variables. Recognise that the slope of a least-squares line indicates the kind of relationship between the independent and dependent variables. A positive slope suggests that as the independent variable increases, the dependent variable also increases. Meanwhile, a negative slope indicates that as the independent variable rises, the dependent variable decreases.
02

Predict the direction of the slope for each dependent variable

a. For nurses' job satisfaction: It is reasonable to predict a negative slope because as the patient-to-nurse ratio increases (i.e., more patients per nurse), this might imply more workload for each nurse which might lead to reduced job satisfaction.\b. For patient satisfaction with hospital care: Again, it seems reasonable to predict a negative slope because a high patient-to-nurse ratio could lead to inadequate attention being given to each patient, hence lower patient satisfaction.\c. For patient's quality of care: It would be logical to expect a negative slope because high patient-to-nurse ratios could imply less available time per patient, which could result in reduced quality of care.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The following data on \(x=\) score on a measure of test anxiety and \(y=\) exam score for a sample of \(n=9\) students are consistent with summary quantities given in the paper "Effects of Humor on Test Anxiety and Performance" (Psychological Reports [1999]: 1203-1212): $$ \begin{array}{rrrrrrrrrr} x & 23 & 14 & 14 & 0 & 17 & 20 & 20 & 15 & 21 \\ y & 43 & 59 & 48 & 77 & 50 & 52 & 46 & 51 & 51 \end{array} $$ Higher values for \(x\) indicate higher levels of anxiety. a. Construct a scatterplot, and comment on the features of the plot. b. Does there appear to be a linear relationship between the two variables? How would you characterize the relationship? c. Compute the value of the correlation coefficient. Is the value of \(r\) consistent with your answer to Part (b)? d. Is it reasonable to conclude that test anxiety caused poor exam performance? Explain.

A sample of 548 ethnically diverse students from Massachusetts were followed over a 19 -month period from 1995 and 1997 in a study of the relationship between TV viewing and eating habits (Pediatrics [2003]: 1321- 1326). For each additional hour of television viewed per day, the number of fruit and vegetable servings per day was found to decrease on average by \(0.14\) serving. a. For this study, what is the dependent variable? What is the predictor variable? b. Would the least-squares line for predicting number of servings of fruits and vegetables using number of hours spent watching TV as a predictor have a positive or negative slope? Explain.

The sales manager of a large company selected a random sample of \(n=10\) salespeople and determined for each one the values of \(x=\) years of sales experience and \(y=\) annual sales (in thousands of dollars). A scatterplot of the resulting \((x, y)\) pairs showed a marked linear pattern. a. Suppose that the sample correlation coefficient is \(r=\) \(.75\) and that the average annual sales is \(\bar{y}=100\). If a particular salesperson is 2 standard deviations above the mean in terms of experience, what would you predict for that person's annual sales? b. If a particular person whose sales experience is \(1.5\) standard deviations below the average experience is predicted to have an annual sales value that is 1 standard deviation below the average annual sales, what is the value of \(r\) ?

The article "Cost-Effectiveness in Public Education" (Chance [1995]: \(38-41\) ) reported that for a regression of \(y=\) average SAT score on \(x=\) expenditure per pupil, based on data from \(n=44\) New Jersey school districts, \(a=766, b=0.015, r^{2}=.160\), and \(s_{e}=53.7\) a. One observation in the sample was \((9900,893)\). What average SAT score would you predict for this district, and what is the corresponding residual? b. Interpret the value of \(s_{e}\). c. How effectively do you think the least-squares line summarizes the relationship between \(x\) and \(y ?\) Explain your reasoning.

Consider the four \((x, y)\) pairs \((0,0),(1,1),(1,-1)\), and \((2,0)\). a. What is the value of the sample correlation coefficient \(r ?\) b. If a fifth observation is made at the value \(x=6\), find alue of \(y\) for which \(r>.5\). c. If a fifth observation is made at the value \(x=6\), find â value of \(y\) for which \(r<.5\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free