Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A sample of 548 ethnically diverse students from Massachusetts were followed over a 19 -month period from 1995 and 1997 in a study of the relationship between TV viewing and eating habits (Pediatrics [2003]: 1321- 1326). For each additional hour of television viewed per day, the number of fruit and vegetable servings per day was found to decrease on average by \(0.14\) serving. a. For this study, what is the dependent variable? What is the predictor variable? b. Would the least-squares line for predicting number of servings of fruits and vegetables using number of hours spent watching TV as a predictor have a positive or negative slope? Explain.

Short Answer

Expert verified
a. The dependent variable is the number of servings of fruit and vegetables per day and the predictor variable is the number of hours of television viewed per day. b. The slope of the line would be negative because as the number of hours of television viewed increases, the servings of fruit and vegetables decrease.

Step by step solution

01

Identifying Variables

The dependent variable is the one that is the 'outcome' or the variable that we want to predict or estimate. The independent or predictor variable is the one that affects the dependent variable. In the given problem, the dependent variable is the number of fruit and vegetable servings per day as this is what we want to predict or estimate and the predictor variable is the number of hours of television viewed per day, as this is the variable that affects the fruit and vegetable intake.
02

Identifying the Slope of the Line

The slope of the least-squares line is based on the relationship between the dependent and independent variables. The problem states that for each additional hour of television viewed per day, the number of fruit and vegetable servings per day decreases by 0.14. This indicates a negative relationship. Therefore, the slope of the line would be negative.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

According to the article "First-Year Academic Success: A Prediction Combining Cognitive and Psychosocial Variables for Caucasian and African American Students" \((\) Journal of College Student Development \([1999]: 599-\) 605), there is a mild correlation between high school GPA \((x)\) and first-year college GPA \((y)\). The data can be summarized as follows: $$ \begin{array}{clc} n=2600 & \sum x=9620 & \sum y=7436 \\ \sum x y=27,918 & \sum x^{2}=36,168 & \sum y^{2}=23,145 \end{array} $$ An alternative formula for computing the correlation coefficient that is based on raw data and is algebraically equivalent to the one given in the text is $$ r=\frac{\sum x y-\frac{\left(\sum x\right)\left(\sum y\right)}{n}}{\sqrt{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}} \sqrt{\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}}} $$ Use this formula to compute the value of the correlation coefficient, and interpret this value.

An article on the cost of housing in California that appeared in the San Luis Obispo Tribune (March 30,2001 ) included the following statement: "In Northern California, people from the San Francisco Bay area pushed into the Central Valley, benefiting from home prices that dropped on average \(\$ 4000\) for every mile traveled east of the Bay area." If this statement is correct, what is the slope of the least-squares regression line, \(\hat{y}=a+b x\), where \(y=\) house price (in dollars) and \(x=\) distance east of the Bay (in miles)? Explain.

The accompanying data represent \(x=\) the amount of catalyst added to accelerate a chemical reaction and \(y=\) the resulting reaction time: $$ \begin{array}{rrrrrr} x & 1 & 2 & 3 & 4 & 5 \\ y & 49 & 46 & 41 & 34 & 25 \end{array} $$ a. Calculate \(r\). Does the value of \(r\) suggest a strong linear relationship? b. Construct a scatterplot. From the plot, does the word linear really provide the most effective description of the relationship between \(x\) and \(y\) ? Explain.

The paper "Postmortem Changes in Strength of Gastropod Shells" (Paleobiology [1992]: \(367-377\) ) included scatterplots of data on \(x=\) shell height (in centimeters) and \(y=\) breaking strength (in newtons) for a sample of \(n=38\) hermit crab shells. The least-squares line was \(\hat{y}=-275.1+244.9 x\) a. What are the slope and the intercept of this line? b. When shell height increases by \(1 \mathrm{~cm}\), by how much does breaking strength tend to change? c. What breaking strength would you predict when shell height is \(2 \mathrm{~cm} ?\) d. Does this approximate linear relationship appear to hold for shell heights as small as \(1 \mathrm{~cm} ?\) Explain.

The sample correlation coefficient between annual raises and teaching evaluations for a sample of \(n=353\) college faculty was found to be \(r=.11\) ("Determination of Faculty Pay: An Agency Theory Perspective," Academy of Management Joumal [1992]: 921-955). a. Interpret this value. b. If a straight line were fit to the data using least squares, what proportion of variation in raises could be attributed to the approximate linear relationship between raises and evaluations?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free