Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Each observation in the following data set is the number of housing units (homes or condominiums) sold during November 1992 in a region corresponding to a particular Orange County, California, ZIP code: \(\begin{array}{lllrrrrrrrrr}25 & 18 & 16 & 6 & 26 & 11 & 29 & 7 & 5 & 15 & 12 & 37 \\ 35 & 11 & 16 & 35 & 20 & 27 & 17 & 30 & 10 & 16 & 28 & 13 \\ 26 & 11 & 12 & 8 & 9 & 29 & 0 & 20 & 30 & 12 & 45 & 26 \\ 21 & 30 & 18 & 31 & 0 & 46 & 47 & 14 & 13 & 29 & 11 & 18 \\ 10 & 27 & 5 & 18 & 67 & 21 & 35 & 48 & 42 & 70 & 43 & 0 \\ 30 & 17 & 35 & 40 & 61 & 18 & 17 & 17 & & & & \end{array}\) Construct a stem-and-leaf display, and comment on any interesting features.

Short Answer

Expert verified
The stem-and-leaf display shows a wide-ranging set of housing sales with a distribution leaning slightly towards the lower sale numbers. Outliers can be noted at the high end of the scale, possibly indicating instances of significantly higher housing activity in certain regions.

Step by step solution

01

Understanding Stem-and-Leaf Display

A stem-and-leaf display or plot is a device for presenting quantitative data in a graphical format, similar to a histogram, to assist in visualizing the shape of a distribution. Stems represent higher order places and leaves represent lower order places.
02

Creating the Stems

Stems will be values ranging from 0 to 7 (as the given data set ranges from 0 to 70), representing the tens place of the data.
03

Attaching the Leaves

For each observation in the data set, the units place is attached to its corresponding stem. For example, a data point of 35 means a leaf of 5 is attached to the stem 3. Repeat this for all observations in the data set.
04

Organizing the Stem-and-Leaf Plot

Organize the leaves in ascending order for each stem. Now, each stem combined with its leaves forms a number in the data set, and observing the table gives a visual representation of all the data.
05

Analysing the Data

The stem-and-leaf plot will allow a clear view of the distribution of the data, and one could potentially identify outliers, mode, or trends visually. This overview can help to interpret the patterns in the housing sale data.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The California Healthy Kids Survey in 1999 and 2001 asked 7 th, 9 th, and 1 1th graders in San Luis Obispo County whether they smoked tobacco. In \(1999,6 \%\) of 7 th graders, \(17 \%\) of 9 th graders, and \(23 \%\) of 11 th graders admitted smoking tobacco while in 2001 the corresponding figures were \(3 \%, 13 \%\), and \(22 \%\). Create a comparative bar chart showing bars for 7 th graders together, bars for 9 th graders together, and bars for 11 th graders together. Comment on any interesting features of the chart.

The Chronicle of Higher Education (August 31 , 2001) published data collected in a survey of a large number of students who were college freshmen in the fall of 2001\. Of those surveyed, \(70.6 \%\) reported that they were attending their first-choice college, \(20.8 \%\) their secondchoice college, \(5.5 \%\) their third-choice college, and \(3.1 \%\) their fourth- or higher-choice college. Use a pie chart to display this information.

An article in the San Luis Obispo Tribune (November 20,2002 ) stated that \(39 \%\) of those with critical housing needs (those who pay more than half their income for housing) lived in urban areas, \(42 \%\) lived in suburban areas, and the rest lived in rural areas. Construct a pie chart that shows the distribution of type of residential area (urban, suburban, or rural) for those with critical housing needs.

An exam is given to students in an introductory statistics course. What is likely to be true of the shape of the histogram of scores if: a. the exam is quite easy? b. the exam is quite difficult? c. half the students in the class have had calculus, the other half have had no prior college math courses, and the exam emphasizes mathematical manipulation? Explain your reasoning in each case.

Stress can affect the physiology and behavior of animals, just as it can with humans (as many of us know all too well). The accompanying data on \(x=\) plasma cortisol concentration (in milligrams of cortisol per milliliter of plasma) and \(y=\) oxygen consumption rate (in milligrams per kilogram per hour) for juvenile steelhead after three 2-min disturbances were read from a graph in the paper \({ }^{\text {"Metabolic Cost of Acute Physical Stress in Juvenile Steel- }}\) head" (Transactions of the American Fisheries Society [1987]: \(257-263\) ). The paper also included data for unstressed fish. \(\begin{array}{lllllllllll}x & 25 & 36 & 48 & 59 & 62 & 72 & 80 & 100 & 100 & 137\end{array}\) \(\begin{array}{lllllllllll}y & 155 & 184 & 180 & 220 & 280 & 163 & 230 & 222 & 241 & 350\end{array}\) a. Is the value of \(y\) determined solely by the value of \(x\) ? Explain your reasoning. b. Construct a scatterplot of the data. c. Does an increase in plasma cortisol concentration appear to be accompanied by a change in oxygen consumption rate? Comment.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free