Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The paper "Lessons from Pacemaker Implantations" (Journal of the American Medical Association [1965]: \(231-232\) ) gave the results of a study that followed 89 heart patients who had received electronic pacemakers. The time (in months) to the first electrical malfunction of the pacemaker was recorded: \(\begin{array}{rrrrrrrrrrrr}24 & 20 & 16 & 32 & 14 & 22 & 2 & 12 & 24 & 6 & 10 & 20 \\ 8 & 16 & 12 & 24 & 14 & 20 & 18 & 14 & 16 & 18 & 20 & 22 \\ 24 & 26 & 28 & 18 & 14 & 10 & 12 & 24 & 6 & 12 & 18 & 16 \\ 34 & 18 & 20 & 22 & 24 & 26 & 18 & 2 & 18 & 12 & 12 & 8 \\ 24 & 10 & 14 & 16 & 22 & 24 & 22 & 20 & 24 & 28 & 20 & 22 \\ 26 & 20 & 6 & 14 & 16 & 18 & 24 & 18 & 16 & 6 & 16 & 10 \\\ 14 & 18 & 24 & 22 & 28 & 24 & 30 & 34 & 26 & 24 & 22 & 28 \\ 30 & 22 & 24 & 22 & 32 & & & & & & & \end{array}\) a. Summarize these data in the form of a frequency distribution, using class intervals of 0 to \(<6,6\) to \(<12\), and so on. b. Compute the relative frequencies and cumulative relative frequencies for each class interval of the frequency distribution of Part (a). c. Show how the relative frequency for the class interval 12 to \(<18\) could be obtained from the cumulative relative frequencies. d. Use the cumulative relative frequencies to give approximate answers to the following: i. What proportion of those who participated in the study had pacemakers that did not malfunction within the first year? ii. If the pacemaker must be replaced as soon as the first electrical malfunction occurs, approximately what proportion required replacement between 1 and 2 years after implantation? e. Construct a cumulative relative frequency plot, and use it to answer the following questions. i. What is the approximate time at which about \(50 \%\) of the pacemakers had failed? ii. What is the approximate time at which only about \(10 \%\) of the pacemakers initially implanted were still functioning?

Short Answer

Expert verified
The detailed solutions for frequency distributions, relative frequencies and cumulative relative frequencies will vary based on calculations. Use the cumulative relative frequencies to infer proportions of pacemakers and interpret their functionality as described in step 4 and 5.

Step by step solution

01

A: Construct Frequency Distribution

Firstly, the data given needs to be formatted into a frequency distribution using class intervals of 0 to < 6,6 to < 12 and so on.
02

B: Compute Relative Frequencies and Cumulative Relative Frequencies

Next, using the frequency distribution from step 1, for each class interval, compute the relative frequencies (frequency in each interval / total number of data points) and cumulative relative frequencies, by accumulating the relative frequency of each class interval.
03

C: Calculate Relative Frequency using Cumulative Relative Frequencies

For the class interval 12 to <18, the relative frequency can be obtained by subtracting the cumulative relative frequency of the previous class interval from the cumulative relative frequency of this interval.
04

D: Answer Questions based on Cumulative Relative Frequencies

To determine the proportion of individuals within the first year without a malfunction, refer to the cumulative relative frequency corresponding to 12. For the pacemakers needing replacement in 1-2 years, subtract the cumulative relative frequency at 12 from that at 24.
05

E: Construct Cumulative Relative Frequency Plot and Interpret

Create a plot of the cumulative relative frequencies against the class intervals. Use this to determine and interpret the time at which ~50% of the pacemakers failed and at which ~10% of the pacemakers are still functioning.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An exam is given to students in an introductory statistics course. What is likely to be true of the shape of the histogram of scores if: a. the exam is quite easy? b. the exam is quite difficult? c. half the students in the class have had calculus, the other half have had no prior college math courses, and the exam emphasizes mathematical manipulation? Explain your reasoning in each case.

According to the National Association of Home Builders, the average size of a home in 1950 was \(983 \mathrm{ft}^{2}\). The average size increased to \(1500 \mathrm{ft}^{2}\) in \(1970,2080 \mathrm{ft}^{2}\) in 1990 ; and \(2330 \mathrm{ft}^{2}\) in 2003 (San Luis Obispo Tribune, October 16,2005\()\). a. Construct a time-series plot that shows how the average size of a home has changed over time. b. If the trend of the time-series plot were to continue, what would you predict the average home size to be in \(2010 ?\)

Stress can affect the physiology and behavior of animals, just as it can with humans (as many of us know all too well). The accompanying data on \(x=\) plasma cortisol concentration (in milligrams of cortisol per milliliter of plasma) and \(y=\) oxygen consumption rate (in milligrams per kilogram per hour) for juvenile steelhead after three 2-min disturbances were read from a graph in the paper \({ }^{\text {"Metabolic Cost of Acute Physical Stress in Juvenile Steel- }}\) head" (Transactions of the American Fisheries Society [1987]: \(257-263\) ). The paper also included data for unstressed fish. \(\begin{array}{lllllllllll}x & 25 & 36 & 48 & 59 & 62 & 72 & 80 & 100 & 100 & 137\end{array}\) \(\begin{array}{lllllllllll}y & 155 & 184 & 180 & 220 & 280 & 163 & 230 & 222 & 241 & 350\end{array}\) a. Is the value of \(y\) determined solely by the value of \(x\) ? Explain your reasoning. b. Construct a scatterplot of the data. c. Does an increase in plasma cortisol concentration appear to be accompanied by a change in oxygen consumption rate? Comment.

The article "Tobacco and Alcohol Use in G-Rated Children's Animated Films" (Journal of the American Medical Association [1999]: \(1131-1136\) ) reported exposure to tobacco and alcohol use in all G-rated animated films released between 1937 and 1997 by five major film studios. The researchers found that tobacco use was shown in \(56 \%\) of the reviewed films. Data on the total tobacco exposure time (in seconds) for films with tobacco use produced by Walt Disney, Inc., were as follows: $$ \begin{array}{rrrrrrrrrr} 223 & 176 & 548 & 37 & 158 & 51 & 299 & 37 & 11 & 165 \\ 74 & 92 & 6 & 23 & 206 & 9 & & & & \end{array} $$ Data for \(11 \mathrm{G}\) -rated animated films showing tobacco use that were produced by MGM/United Artists, Warner Brothers, Universal, and Twentieth Century Fox were also given. The tobacco exposure times (in seconds) for these films was as follows: $$ \begin{array}{lllllllllll} 205 & 162 & 6 & 1 & 117 & 5 & 91 & 155 & 24 & 55 & 17 \end{array} $$ Construct a comparative stem-and-leaf display for these data. Comment on the interesting features of this display.

The article "Determination of Most Representative Subdivision" (Journal of Energy Engineering [1993]: 43 - 55) gave data on various characteristics of subdivisions that could be used in deciding whether to provide electrical power using overhead lines or underground lines. Data on the variable \(x=\) total length of streets within a subdivision are as follows: \(\begin{array}{rrrrrrrr}1280 & 5320 & 4390 & 2100 & 1240 & 3060 & 4770 & 1050 \\\ 360 & 3330 & 3380 & 340 & 1000 & 960 & 1320 & 530 \\ 3350 & 540 & 3870 & 1250 & 2400 & 960 & 1120 & 2120 \\ 450 & 2250 & 2320 & 2400 & 3150 & 5700 & 5220 & 500 \\ 1850 & 2460 & 5850 & 2700 & 2730 & 1670 & 100 & 5770 \\ 3150 & 1890 & 510 & 240 & 396 & 1419 & 2109 & \end{array}\) a. Construct a stem-and-leaf display for these data using the thousands digit as the stem. Comment on the various features of the display. b. Construct a histogram using class boundaries of 0 to 1000,1000 to 2000 , and so on. How would you describe the shape of the histogram? c. What proportion of subdivisions has total length less than 2000 ? between 2000 and 4000 ?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free