Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The experiment described in Example \(15.4\) also gave data on change in body fat mass for men ("Growth Hormone and Sex Steroid Administration in Healthy Aged Women and Men," Journal of the American Medical Association [2002]: 2282-2292). Each of 74 male subjects who were over age 65 was assigned at random to one of the following four treatments: (1) placebo "growth hormone" and placebo "steroid" (denoted by \(\mathrm{P}+\mathrm{P}),(2)\) placebo "growth hormone" and the steroid testosterone (denoted by \(\mathrm{P}+\mathrm{S}\) ), (3) growth hormone and placebo "steroid" (denoted by G + P), and (4) growth hormone and the steroid testosterone (denoted by \(\mathrm{G}+\mathrm{S}\) ). The accompanying table lists data on change in body fat mass over the 26-week period following the treatment that are consistent with summary quantities given in the article $$\begin{array}{rrrr} \text { Treatment } \quad \mathbf{P}+\mathbf{P} & \mathbf{P}+\mathbf{S} & \mathbf{G}+\mathbf{P} & \mathbf{G}+\mathbf{S} \\ \hline 0.3 & -3.7 & -3.8 & -5.0 \\ 0.4 & -1.0 & -3.2 & -5.0 \\ -1.7 & 0.2 & -4.9 & -3.0 \\ -0.5 & -2.3 & -5.2 & -2.6 \\ -2.1 & 1.5 & -2.2 & -6.2 \\ 1.3 & -1.4 & -3.5 & -7.0 \\ 0.8 & 1.2 & -4.4 & -4.5 \\ 1.5 & -2.5 & -0.8 & -4.2 \\ -1.2 & -3.3 & -1.8 & -5.2 \\ -0.2 & 0.2 & -4.0 & -6.2 \\ 1.7 & 0.6 & -1.9 & -4.0 \\ 1.2 & -0.7 & -3.0 & -3.9 \end{array}$$ $$\begin{array}{rrrrr} \text { Treatment } & \mathbf{P}+\mathbf{P} & \mathbf{P}+\mathbf{S} & \mathbf{G}+\mathbf{P} & \mathbf{G}+\mathbf{S} \\ \hline & 0.6 & -0.1 & -1.8 & -3.3 \\ & 0.4 & -3.1 & -2.9 & -5.7 \\ & -1.3 & 0.3 & -2.9 & -4.5 \\ & -0.2 & -0.5 & -2.9 & -4.3 \\ & 0.7 & -0.8 & -3.7 & -4.0 \\ & & -0.7 & & -4.2 \\ & & -0.9 & & -4.7 \\ & & -2.0 & & \\ & & -0.6 & & \\ n & 17 & 21 & 17 & 19 \\ \bar{x} & 0.100 & -0.933 & -3.112 & -4.605 \\ s & 1.139 & 1.443 & 1.178 & 1.122 \\ s^{2} & 1.297 & 2.082 & 1.388 & 1.259 \end{array}$$ Also, \(N=74\), grand total \(=-158.3\), and \(\overline{\bar{x}}=\frac{-158.3}{74}=\) \(-2.139 .\) Carry out an \(F\) test to see whether true mean change in body fat mass differs for the four treatments.

Short Answer

Expert verified
The result of the F-test will show whether there is a statistically significant difference between the group means. A high F-score will suggest we reject the null hypothesis and conclude there are significant differences between the groups. A low F-score will suggest we retain the null hypothesis, concluding there are no significant differences between the groups. The actual F-score value will be dependent on the provided data.

Step by step solution

01

Calculate the sum of squares (SS)

First, calculate the sum of squares within groups (SSW) and the sum of squares between groups (SSB). SSW is the sum of the variances of each group multiplied by the number of members in each group minus 1. These can be found using the provided variances \(s^{2}\) and the respective number of members in each group \(n\). SSB is the sum of the squared differences between each group's mean and the overall mean, multiplied by the number of members in each group.
02

Calculate the degrees of freedom (df)

The degrees of freedom for SSW (dfW) and SSB (dfB) need to be calculated next. dfW is the total number of subjects minus the number of groups, and dfB is the number of groups minus 1.
03

Calculate the mean squares (MS)

Next, calculate the mean squares within groups (MSW) and the mean squares between groups (MSB). MSW is the SSW divided by dfW, and MSB is the SSB divided by dfB.
04

Calculate the F-statistic

The F statistic is calculated by dividing MSB by MSW.
05

Decision to Reject or Retain Null Hypothesis

Compare the F statistic to the critical value from the F distribution with dfB and dfW degrees of freedom. If the F statistic is greater than the critical value, then the null hypothesis that the different treatments result in the same mean change can be rejected. If the F statistic is less than or equal to the critical value, then there is not enough evidence to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The accompanying data resulted from a flammability study in which specimens of five different fabrics were tested to determine burn times. $$\begin{array}{lllllll} & \mathbf{1} & 17.8 & 16.2 & 15.9 & 15.5 & \\ & \mathbf{2} & 13.2 & 10.4 & 11.3 & & \\ \text { Fabric } & \mathbf{3} & 11.8 & 11.0 & 9.2 & 10.0 & \\ & \mathbf{4} & 16.5 & 15.3 & 14.1 & 15.0 & 13.9 \\ & \mathbf{5} & 13.9 & 10.8 & 12.8 & 11.7 & \end{array}$$ \(\begin{aligned} \mathrm{MSTr} &=23.67 \\ \mathrm{MSE} &=1.39 \\ F &=17.08 \\ P \text { -value } &=.000 \end{aligned}\) The accompanying output gives the T-K intervals as calculated by MINITAB. Identify significant differences and give the underscoring pattern. $$\begin{array}{lrrr} & 1 & 2 & 3 & 4 \\ 2 & 1.938 & & & \\ & 7.495 & & & \\ 3 & 3.278 & -1.645 & & \\ & 8.422 & 3.912 & & \\ 4 & 3.830 & -0.670 & -2.020 & \\ & 1.478 & -3.445 & -4.372 & 0.220 \\ 5 & 6.622 & 2.112 & 0.772 & 5.100 \end{array}$$

Samples of six different brands of diet or imitation margarine were analyzed to determine the level of physiologically active polyunsaturated fatty acids (PAPUFA, in percent), resulting in the data shown in the accompanying table. (The data are fictitious, but the sample means agree with data reported in Consumer Reports.) $$\begin{array}{llllll} \text { Imperial } & 14.1 & 13.6 & 14.4 & 14.3 & \\ \text { Parkay } & 12.8 & 12.5 & 13.4 & 13.0 & 12.3 \\ \text { Blue Bonnet } & 13.5 & 13.4 & 14.1 & 14.3 & \\ \text { Chiffon } & 13.2 & 12.7 & 12.6 & 13.9 & \\ \text { Mazola } & 16.8 & 17.2 & 16.4 & 17.3 & 18.0 \\ \text { Fleischmann's } & 18.1 & 17.2 & 18.7 & 18.4 & \end{array}$$ a. Test for differences among the true average PAPUFA percentages for the different brands. Use \(\alpha=.05\). b. Use the T-K procedure to compute \(95 \%\) simultaneous confidence intervals for all differences between means and interpret the resulting intervals.

It has been reported that varying work schedules can lead to a variety of health problems for workers. The article "Nutrient Intake in Day Workers and Shift Workers" (Work and Stress [1994]: 332-342) reported on blood glucose levels (mmol/L) for day-shift workers and workers on two different types of rotating shifts. The sample sizes were \(n_{1}=37\) for the day shift, \(n_{2}=34\) for the second shift, and \(n_{3}=25\) for the third shift. A single- factor ANOVA resulted in \(F=3.834\). At a significance level of .05, does true average blood glucose level appear to depend on the type of shift?

In the introduction to this chapter, we considered a study comparing three groups of college students (soccer athletes, nonsoccer athletes, and a control group consisting of students who did not participate in intercollegiate sports). The following information on scores from the Hopkins Verbal Learning Test (which measures immediate memory recall) was $$\begin{array}{l|ccc} \text { Group } & \text { Soccer Athletes } & \text { Nonsoccer Athletes } & \text { Control } \\ \hline \text { Sample size } & 86 & 95 & 53 \\ \text { Sample mean score } & 29.90 & 30.94 & 29.32 \\ \begin{array}{l} \text { Sample standard } \\ \text { deviation } \end{array} & 3.73 & 5.14 & 3.78 \\ \hline \end{array}$$ In addition, \(\overline{\bar{x}}=30.19\). Suppose that it is reasonable to regard these three samples as random samples from the three student populations of interest. Is there sufficient evidence to conclude that the mean Hopkins score is not the same for the three student populations? Use \(\alpha=.05\).

The nutritional quality of shrubs commonly used for feed by rabbits was the focus of a study summarized in the article "Estimation of Browse by Size Classes for Snowshoe Hare" (Journal of Wildlife Management [1980]: 34-40). The energy content (cal/g) of three sizes (4 mm or less, \(5-7 \mathrm{~mm}\), and \(8-10 \mathrm{~mm}\) ) of serviceberries was studied. Let \(\mu_{1}, \mu_{2}\), and \(\mu_{3}\) denote the true energy content for the three size classes. Suppose that \(95 \%\) simultaneous confidence intervals for \(\mu_{1}-\mu_{2}, \mu_{1}-\mu_{3}\), and \(\mu_{2}-\mu_{3}\) are \((-10,290),(150,450)\), and \((10,310)\), respectively. How would you interpret these intervals?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free