Chapter 15: Problem 22
The article "Heavy Drinking and Problems Among Wine Drinkers" (Journal of Studies on Alcohol [1999]: 467-471) analyzed drinking problems among Canadians. For each of several different groups of drinkers, the mean and standard deviation of "highest number of drinks consumed" were calculated: \(\bar{x}\) $$\begin{array}{lccc} & \overline{\boldsymbol{x}} & \boldsymbol{s} & {n} \\ \hline \text { Beer only } & 7.52 & 6.41 & 1256 \\ \text { Wine only } & 2.69 & 2.66 & 1107 \\ \text { Spirits only } & 5.51 & 6.44 & 759 \\ \text { Beer and wine } & 5.39 & 4.07 & 1334 \\ \text { Beer and spirits } & 9.16 & 7.38 & 1039 \\ \text { Wine and spirits } & 4.03 & 3.03 & 1057 \\ \text { Beer, wine, and spirits } & 6.75 & 5.49 & 2151 \end{array}$$ Assume that each of the seven samples studied can be viewed as a random sample for the respective group. Is there sufficient evidence to conclude that the mean value of highest number of drinks consumed is not the same for all seven groups?