Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give as much information as you can about the \(P\) -value for an upper-tailed \(F\) test in each of the following situations. a. \(\mathrm{df}_{1}=4, \mathrm{df}_{2}=15, F=5.37\) b. \(\mathrm{df}_{1}=4, \mathrm{df}_{2}=15, F=1.90\) c. \(\mathrm{df}_{1}=4, \mathrm{df}_{2}=15, F=4.89\) d. \(\mathrm{df}_{1}=3, \mathrm{df}_{2}=20, F=14.48\) e. \(\mathrm{df}_{1}=3, \mathrm{df}_{2}=20, F=2.69\) f. \(\mathrm{df}_{1}=4, \mathrm{df}_{2}=50, F=3.24\)

Short Answer

Expert verified
The exact P-values can not be stated unless the F distribution table or statistical software is available. However, the main point is to understand that the P-value can be calculated given the degrees of freedom and an F value for an upper-tailed F test. This P-value tells us the probability of getting the observed data, given that the null hypothesis is true.

Step by step solution

01

Calculate the P-value for first scenario

Make use of an F distribution table, calculator, or statistical software to find the P-value for a scenario where \(\mathrm{df}_{1}=4\), \(\mathrm{df}_{2}=15\), and \(F=5.37\).
02

Calculate the P-value for second scenario

Determine the P-value given that \(\mathrm{df}_{1}=4\), \(\mathrm{df}_{2}=15\), and \(F=1.90\).
03

Calculate the P-value for third scenario

Find out the P-value for the scenario where \(\mathrm{df}_{1}=4\), \(\mathrm{df}_{2}=15\), and \(F=4.89\).
04

Calculate the P-value for fourth scenario

Obtain the P-value for the situation when \(\mathrm{df}_{1}=3\), \(\mathrm{df}_{2}=20\), and \(F=14.48\).
05

Calculate the P-value for fifth scenario

Determine the P-value for the scenario where \(\mathrm{df}_{1}=3\), \(\mathrm{df}_{2}=20\), and \(F=2.69\).
06

Calculate the P-value for sixth scenario

Confirm the P-value for the setting where \(\mathrm{df}_{1}=4\), \(\mathrm{df}_{2}=50\), and \(F=3.24\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the introduction to this chapter, we considered a study comparing three groups of college students (soccer athletes, nonsoccer athletes, and a control group consisting of students who did not participate in intercollegiate sports). The following information on scores from the Hopkins Verbal Learning Test (which measures immediate memory recall) was $$\begin{array}{l|ccc} \text { Group } & \text { Soccer Athletes } & \text { Nonsoccer Athletes } & \text { Control } \\ \hline \text { Sample size } & 86 & 95 & 53 \\ \text { Sample mean score } & 29.90 & 30.94 & 29.32 \\ \begin{array}{l} \text { Sample standard } \\ \text { deviation } \end{array} & 3.73 & 5.14 & 3.78 \\ \hline \end{array}$$ In addition, \(\overline{\bar{x}}=30.19\). Suppose that it is reasonable to regard these three samples as random samples from the three student populations of interest. Is there sufficient evidence to conclude that the mean Hopkins score is not the same for the three student populations? Use \(\alpha=.05\).

Leaf surface area is an important variable in plant gas-exchange rates. The article "Fluidized Bed Coating of Conifer Needles with Glass Beads for Determination of Leaf Surface Area" (Forest Science [1980]: 29-32) included an analysis of dry matter per unit surface area \(\left(\mathrm{mg} / \mathrm{cm}^{3}\right)\) for trees raised under three different growing conditions. Let \(\mu_{1}, \mu_{2}\), and \(\mu_{3}\) represent the true mean dry matter per unit surface area for the growing conditions 1 , 2 , and 3 , respectively. The given \(95 \%\) simultaneous confidence intervals are based on summary quantities that appear in the article: \(\begin{array}{llll}\text { Difference } & \mu_{1}-\mu_{2} & \mu_{1}-\mu_{3} & \mu_{2}-\mu_{3}\end{array}\) \(\begin{array}{llll}\text { Interval } & (-3.11,-1.11) & (-4.06,-2.06) & (-1.95, .05)\end{array}\) Which of the following four statements do you think describes the relationship between \(\mu_{1}, \mu_{2}\), and \(\mu_{3} ?\) Explain your choice. a. \(\mu_{1}=\mu_{2}\), and \(\mu_{3}\) differs from \(\mu_{1}\) and \(\mu_{2}\). b. \(\mu_{1}=\mu_{3}\), and \(\mu_{2}\) differs from \(\mu_{1}\) and \(\mu_{3}\). c. \(\mu_{2}=\mu_{3}\), and \(\mu_{1}\) differs from \(\mu_{2}\) and \(\mu_{3}\). d. All three \(\mu\) 's are different from one another.

An investigation carried out to study the toxic effects of mercury was described in the article "Comparative Responses of the Action of Different Mercury Compounds on Barley" (International Journal of Environmental Studies \([1983]: 323-327\) ). Ten different concentrations of mercury \((0,1,5,10,50,100,200,300,400\), and \(500 \mathrm{mg} / \mathrm{L})\) were compared with respect to their effects on average dry weight (per 100 seven- day-old seedlings). The basic experiment was replicated four times for a total of 40 dryweight observations (four for each treatment level). The article reported an ANOVA \(F\) statistic value of \(1.895 .\) Using a significance level of \(.05\), test the null hypothesis that the true mean dry weight is the same for all 10 concentration levels.

The accompanying underscoring pattern appeared in the article "Effect of \(\mathrm{SO}_{2}\) on Transpiration, Chlorophyll Content, Growth, and Injury in Young Seedlings of Woody Angiosperms" ( \mathrm{\\{} C a n a d i a n ~ J o u r n a l ~ o f ~ F o r e s t ~ R e s e a r c h ~ [1980]: 78-81). Water loss of plants (Acer saccharinum) exposed to \(0,2,4,8\), and 16 hours of fumigation was recorded, and a multiple comparison procedure was used to detect differences among the mean water losses for the different fumigation durations. How would you interpret this pattern? $$\begin{array}{rrrrr} &\text { Duration of fumigation } &16 & 0 & 8 & 2 & 4 \\ &\text { Sample mean water loss } &27.57 & 28.23 & 30.21 & 31.16 & 36.21 \end{array}$$

The experiment described in Example \(15.4\) also gave data on change in body fat mass for men ("Growth Hormone and Sex Steroid Administration in Healthy Aged Women and Men," Journal of the American Medical Association [2002]: 2282-2292). Each of 74 male subjects who were over age 65 was assigned at random to one of the following four treatments: (1) placebo "growth hormone" and placebo "steroid" (denoted by \(\mathrm{P}+\mathrm{P}),(2)\) placebo "growth hormone" and the steroid testosterone (denoted by \(\mathrm{P}+\mathrm{S}\) ), (3) growth hormone and placebo "steroid" (denoted by G + P), and (4) growth hormone and the steroid testosterone (denoted by \(\mathrm{G}+\mathrm{S}\) ). The accompanying table lists data on change in body fat mass over the 26-week period following the treatment that are consistent with summary quantities given in the article $$\begin{array}{rrrr} \text { Treatment } \quad \mathbf{P}+\mathbf{P} & \mathbf{P}+\mathbf{S} & \mathbf{G}+\mathbf{P} & \mathbf{G}+\mathbf{S} \\ \hline 0.3 & -3.7 & -3.8 & -5.0 \\ 0.4 & -1.0 & -3.2 & -5.0 \\ -1.7 & 0.2 & -4.9 & -3.0 \\ -0.5 & -2.3 & -5.2 & -2.6 \\ -2.1 & 1.5 & -2.2 & -6.2 \\ 1.3 & -1.4 & -3.5 & -7.0 \\ 0.8 & 1.2 & -4.4 & -4.5 \\ 1.5 & -2.5 & -0.8 & -4.2 \\ -1.2 & -3.3 & -1.8 & -5.2 \\ -0.2 & 0.2 & -4.0 & -6.2 \\ 1.7 & 0.6 & -1.9 & -4.0 \\ 1.2 & -0.7 & -3.0 & -3.9 \end{array}$$ $$\begin{array}{rrrrr} \text { Treatment } & \mathbf{P}+\mathbf{P} & \mathbf{P}+\mathbf{S} & \mathbf{G}+\mathbf{P} & \mathbf{G}+\mathbf{S} \\ \hline & 0.6 & -0.1 & -1.8 & -3.3 \\ & 0.4 & -3.1 & -2.9 & -5.7 \\ & -1.3 & 0.3 & -2.9 & -4.5 \\ & -0.2 & -0.5 & -2.9 & -4.3 \\ & 0.7 & -0.8 & -3.7 & -4.0 \\ & & -0.7 & & -4.2 \\ & & -0.9 & & -4.7 \\ & & -2.0 & & \\ & & -0.6 & & \\ n & 17 & 21 & 17 & 19 \\ \bar{x} & 0.100 & -0.933 & -3.112 & -4.605 \\ s & 1.139 & 1.443 & 1.178 & 1.122 \\ s^{2} & 1.297 & 2.082 & 1.388 & 1.259 \end{array}$$ Also, \(N=74\), grand total \(=-158.3\), and \(\overline{\bar{x}}=\frac{-158.3}{74}=\) \(-2.139 .\) Carry out an \(F\) test to see whether true mean change in body fat mass differs for the four treatments.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free