Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the variables \(y, x_{1}\), and \(x_{2}\) are related by the regression model $$ y=1.8+.1 x_{1}+.8 x_{2}+e $$ a. Construct a graph (similar to that of Figure \(14.5)\) showing the relationship between mean \(y\) and \(x_{2}\) for fixed values 10,20 , and 30 of \(x_{1}\). b. Construct a graph depicting the relationship between mean \(y\) and \(x_{1}\) for fixed values 50,55, and 60 of \(x_{2}\). c. What aspect of the graphs in Parts (a) and (b) can be attributed to the lack of an interaction between \(x_{1}\) and \(x_{2}\) ? d. Suppose the interaction term \(.03 x_{3}\) where \(x_{3}=x_{1} x_{2}\) is added to the regression model equation. Using this new model, construct the graphs described in Parts (a) and (b). How do they differ from those obtained in Parts (a) and (b)?

Short Answer

Expert verified
For fixed values of \(x_{1}\) or \(x_{2}\), there are linear relationships between \(y\) and \(x_{1}\) or \(y\) and \(x_{2}\). The lack of interaction between \(x_{1}\) and \(x_{2}\) is reflected in parallel lines in the graphs. Adding an interaction term will change the slope of these lines, showing a change in the effect of one independent variable on the dependent variable \(y\) that depends on the value of the other independent variable.

Step by step solution

01

Graph without interaction term for fixed values of \(x_1\)

The regression equation is \(y=1.8+.1 x_{1}+.8 x_{2}+e\). To construct the graph, substitute different fixed values of \(x_{1}\) (10, 20, 30) into the regression equation. The equation becomes \(y = 1.8 + 1*x_{1} + 0.8*x_{2} + e\). Keeping \(x_{2}\) as the variable, plot y against \(x_{2}\)}, for each value of \(x_1\).
02

Graph without interaction term for fixed values of \(x_2\)

Again, use the regression equation \(y=1.8+.1 x_{1}+.8 x_{2}+e\). This time, substitute different fixed values of \(x_{2}\) (50, 55, 60) into the regression equation. The equation becomes \(y = 1.8 + .1 * x_{1} + .8 * x_{2} + e\). Keeping \(x_{1}\) as the variable, plot y against \(x_{1}\)}, for each value of \(x_2\).
03

Interpret the graphs for interaction between \(x_{1}\) and \(x_{2}\)

If there is no interaction between \(x_{1}\) and \(x_{2}\), this means the effect of \(x_{1}\) on y doesn't depend on \(x_{2}\) and vice versa. This is reflected in the graphs as parallel lines: the mean of \(y\) changes with \(x_{1}\) or \(x_{2}\) but the slopes of the lines are constant - they don't depend on the specific value of either \(x_{1}\) or \(x_{2}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The accompanying MINITAB output results from fitting the model described in Exercise \(14.12\) to data. $$ \begin{array}{lrrr} \text { Predictor } & \text { Coef } & \text { Stdev } & \text { t-ratio } \\ \text { Constant } & 86.85 & 85.39 & 1.02 \\ \mathrm{X} 1 & -0.12297 & 0.03276 & -3.75 \\ \mathrm{X} 2 & 5.090 & 1.969 & 2.58 \\ \mathrm{X} 3 & -0.07092 & 0.01799 & -3.94 \\ \mathrm{X} 4 & 0.0015380 & 0.0005560 & 2.77 \\ \mathrm{~S}=4.784 & \mathrm{R}-\mathrm{sq}=90.8 \% & \mathrm{R}-\mathrm{s} q(\mathrm{adj})=89.4 \% \end{array} $$ $$ \begin{array}{lrrr} \text { Analysis of Variance } & & & \\ & \text { DF } & \text { SS } & \text { MS } \\ \text { Regression } & 4 & 5896.6 & 1474.2 \\ \text { Error } & 26 & 595.1 & 22.9 \\ \text { Total } & 30 & 6491.7 & \end{array} $$ a. What is the estimated regression equation? b. Using a \(.01\) significance level, perform the model utility test. c. Interpret the values of \(R^{2}\) and \(s_{e}\) given in the output.

The article "Effect of Manual Defoliation on Pole Bean Yield" (Journal of Economic Entomology [1984]: \(1019-1023\) ) used a quadratic regression model to describe the relationship between \(y=\) yield \((\mathrm{kg} /\) plot \()\) and \(x=\mathrm{de}-\) foliation level (a proportion between 0 and 1 ). The estimated regression equation based on \(n=24\) was \(\hat{y}=\) \(12.39+6.67 x_{1}-15.25 x_{2}\) where \(x_{1}=x\) and \(x_{2}=x^{2} .\) The article also reported that \(R^{2}\) for this model was .902. Does the quadratic model specify a useful relationship between \(y\) and \(x ?\) Carry out the appropriate test using a \(.01\) level of significance.

This exercise requires the use of a computer package. The accompanying data resulted from a study of the relationship between \(y=\) brightness of finished paper and the independent variables \(x_{1}=\) hydrogen peroxide (\% by weight), \(x_{2}=\) sodium hydroxide (\% by weight), \(x_{3}=\) silicate \((\%\) by weight \()\), and \(x_{4}=\) process temperature ("Advantages of CE-HDP Bleaching for High Brightness Kraft Pulp Production," TAPPI [1964]: 107A-173A). $$ \begin{array}{ccccc} x_{1} & x_{2} & x_{3} & x_{4} & y \\ \hline .2 & .2 & 1.5 & 145 & 83.9 \\ .4 & .2 & 1.5 & 145 & 84.9 \\ .2 & .4 & 1.5 & 145 & 83.4 \\ .4 & .4 & 1.5 & 145 & 84.2 \\ .2 & .2 & 3.5 & 145 & 83.8 \\ .4 & .2 & 3.5 & 145 & 84.7 \\ .2 & .4 & 3.5 & 145 & 84.0 \\ .4 & .4 & 3.5 & 145 & 84.8 \\ .2 & .2 & 1.5 & 175 & 84.5 \\ .4 & .2 & 1.5 & 175 & 86.0 \\ .2 & .4 & 1.5 & 175 & 82.6 \\ .4 & .4 & 1.5 & 175 & 85.1 \\ .2 & .2 & 3.5 & 175 & 84.5 \\ .4 & .2 & 3.5 & 175 & 86.0 \\ .2 & .4 & 3.5 & 175 & 84.0 \\ .4 & .4 & 3.5 & 175 & 85.4 \\ .1 & .3 & 2.5 & 160 & 82.9 \\ .5 & .3 & 2.5 & 160 & 85.5\\\ .3 & .1 & 2.5 & 160 & 85.2 \\ .3 & .5 & 2.5 & 160 & 84.5 \\ .3 & .3 & 0.5 & 160 & 84.7 \\ .3 & .3 & 4.5 & 160 & 85.0 \\ .3 & .3 & 2.5 & 130 & 84.9 \\ .3 & .3 & 2.5 & 190 & 84.0 \\ .3 & .3 & 2.5 & 160 & 84.5 \\ .3 & .3 & 2.5 & 160 & 84.7 \\ .3 & .3 & 2.5 & 160 & 84.6 \\ .3 & .3 & 2.5 & 160 & 84.9 \\ .3 & .3 & 2.5 & 160 & 84.9 \\ .3 & .3 & 2.5 & 160 & 84.5 \\ .3 & .3 & 2.5 & 160 & 84.6 \end{array} $$ a. Find the estimated regression equation for the model that includes all independent variables, all quadratic terms, and all interaction terms. b. Using a \(.05\) significance level, perform the model utility test. c. Interpret the values of the following quantities: SSResid, \(R^{2}, s_{e}\)

The ability of ecologists to identify regions of greatest species richness could have an impact on the preservation of genetic diversity, a major objective of the World Conservation Strategy. The article "Prediction of Rarities from Habitat Variables: Coastal Plain Plants on Nova Scotian Lakeshores" (Ecology [1992]: \(1852-1859\) ) used a sample of \(n=37\) lakes to obtain the estimated regression equation $$ \begin{aligned} \hat{y}=& 3.89+.033 x_{1}+.024 x_{2}+.023 x_{3} \\ &+.008 x_{4}-.13 x_{5}-.72 x_{6} \end{aligned} $$ where \(y=\) species richness, \(x_{1}=\) watershed area, \(x_{2}=\) shore width, \(x_{3}=\) drainage \((\%), x_{4}=\) water color (total color units), \(x_{5}=\) sand \((\%)\), and \(x_{6}=\) alkalinity. The coefficient of multiple determination was reported as \(R^{2}=.83\). Use a test with significance level \(.01\) to decide whether the chosen model is useful.

Obtain as much information as you can about the \(P\) -value for the \(F\) test for model utility in each of the following situations: a. \(k=2, n=21\), calculated \(F=2.47\) b. \(k=8, n=25\), calculated \(F=5.98\) c. \(k=5, n=26\), calculated \(F=3.00\) d. The full quadratic model based on \(x_{1}\) and \(x_{2}\) is fit, \(n=20\), and calculated \(F=8.25\). \mathrm{\\{} e . ~ \(k=5, n=100\), calculated \(F=2.33\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free