Chapter 14: Problem 8
The relationship between yield of maize, date of planting, and planting density was investigated in the article "Development of a Model for Use in Maize Replant Decisions" (Agronomy Journal [1980]: 459-464). Let \(\begin{aligned} y &=\text { percent maize yield } \\ x_{1} &=\text { planting date }(\text { days after April 20 }) \\ x_{2} &=\text { planting density (plants/ha) } \end{aligned}\) The regression model with both quadratic terms \((y=\alpha+\) \(\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+e\) where \(x_{3}=x_{1}^{2}\) and \(x_{4}=x_{2}^{2}\) ) provides a good description of the relationship between \(y\) and the independent variables. a. If \(\alpha=21.09, \beta_{1}=.653, \beta_{2}=.0022, \beta_{3}=-.0206\), and \(\beta_{4}=.00004\), what is the population regression function? b. Use the regression function in Part (a) to determine the mean yield for a plot planted on May 6 with a density of 41,180 plants/ha. c. Would the mean yield be higher for a planting date of May 6 or May 22 (for the same density)? d. Is it legitimate to interpret \(\beta_{1}=.653\) as the true average change in yield when planting date increases by one day and the values of the other three predictors are held fixed? Why or why not?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.