Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

This exercise requires the use of a computer package. The accompanying data resulted from a study of the relationship between \(y=\) brightness of finished paper and the independent variables \(x_{1}=\) hydrogen peroxide (\% by weight), \(x_{2}=\) sodium hydroxide (\% by weight), \(x_{3}=\) silicate \((\%\) by weight \()\), and \(x_{4}=\) process temperature ("Advantages of CE-HDP Bleaching for High Brightness Kraft Pulp Production," TAPPI [1964]: 107A-173A). $$ \begin{array}{ccccc} x_{1} & x_{2} & x_{3} & x_{4} & y \\ \hline .2 & .2 & 1.5 & 145 & 83.9 \\ .4 & .2 & 1.5 & 145 & 84.9 \\ .2 & .4 & 1.5 & 145 & 83.4 \\ .4 & .4 & 1.5 & 145 & 84.2 \\ .2 & .2 & 3.5 & 145 & 83.8 \\ .4 & .2 & 3.5 & 145 & 84.7 \\ .2 & .4 & 3.5 & 145 & 84.0 \\ .4 & .4 & 3.5 & 145 & 84.8 \\ .2 & .2 & 1.5 & 175 & 84.5 \\ .4 & .2 & 1.5 & 175 & 86.0 \\ .2 & .4 & 1.5 & 175 & 82.6 \\ .4 & .4 & 1.5 & 175 & 85.1 \\ .2 & .2 & 3.5 & 175 & 84.5 \\ .4 & .2 & 3.5 & 175 & 86.0 \\ .2 & .4 & 3.5 & 175 & 84.0 \\ .4 & .4 & 3.5 & 175 & 85.4 \\ .1 & .3 & 2.5 & 160 & 82.9 \\ .5 & .3 & 2.5 & 160 & 85.5\\\ .3 & .1 & 2.5 & 160 & 85.2 \\ .3 & .5 & 2.5 & 160 & 84.5 \\ .3 & .3 & 0.5 & 160 & 84.7 \\ .3 & .3 & 4.5 & 160 & 85.0 \\ .3 & .3 & 2.5 & 130 & 84.9 \\ .3 & .3 & 2.5 & 190 & 84.0 \\ .3 & .3 & 2.5 & 160 & 84.5 \\ .3 & .3 & 2.5 & 160 & 84.7 \\ .3 & .3 & 2.5 & 160 & 84.6 \\ .3 & .3 & 2.5 & 160 & 84.9 \\ .3 & .3 & 2.5 & 160 & 84.9 \\ .3 & .3 & 2.5 & 160 & 84.5 \\ .3 & .3 & 2.5 & 160 & 84.6 \end{array} $$ a. Find the estimated regression equation for the model that includes all independent variables, all quadratic terms, and all interaction terms. b. Using a \(.05\) significance level, perform the model utility test. c. Interpret the values of the following quantities: SSResid, \(R^{2}, s_{e}\)

Short Answer

Expert verified
An answer cannot be provided without running the statistical analysis using software like R, SPSS, or Minitab. However, after running the regressions as described in the step by step solution, one can obtain the regression equation, F-statistic for model utility, and values of SSResid, \(R^{2}\), and \(s_{e}\).

Step by step solution

01

Constructing the Regression Model

Import the given data into a statistical software package and use its multiple regression function to construct a model that includes all independent variables, their squared terms, and all their interactions.
02

Perform the Model Utility Test

Perform the model utility test with a significance level of 0.05 using an F-test. The Null Hypothesis will assume that all regression coefficients are zero. If the p-value obtained from the F-statistic is less than the significance level, the null hypothesis is rejected and the alternative hypothesis is accepted.
03

Interpret the Values

SSResid is the sum of squares of residuals. It measures the variation in the data not explained by the model. \(R^{2}\) (R-Sq) is the coefficient of determination. It measures the proportion of variation in the dependent variable that can be predicted from the independent variables. \(s_{e}\) is the standard error of the residuals, a measure of the difference between the observed and predicted values of the dependent variable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Statistical Software Package
Statistical software packages are crucial tools for researchers and analysts who deal with complex data sets and require advanced analytical tools. When working with multiple regression analysis, these software packages offer automated calculations that save time and reduce the likelihood of human error in statistical computation.

For example, in the given exercise, data from a study that examines the relationship between the brightness of paper and various independent variables is imported into such a software. The software efficiently handles multiple variables, polynomial terms, and interactions, which can be quite challenging to manage without computational aid.

Statistical packages typically come with user-friendly interfaces and provide outputs such as regression equations, significance tests, and diagnostic measures. These outputs enable users to interpret their model's predictive power and the statistical significance of their findings efficiently.
Model Utility Test
The model utility test is an essential step in regression analysis to assess the overall significance of the regression model. This test examines whether the independent variables, as a group, are significantly related to the dependent variable.

The F-test is commonly employed for this purpose. In a model utility test, the null hypothesis assumes that all regression coefficients are zero—indicating no linear relationship between the predictors and the outcome. On the other hand, the alternative hypothesis suggests that at least one coefficient is not zero. If the computed p-value from the F-statistic is less than the chosen significance level, typically 0.05, we reject the null hypothesis, providing evidence that our model has utility in explaining the dependent variable.
Sum of Squares of Residuals
The sum of squares of residuals (SSResid) is a measure that reflects the variation in the observed data that the regression model does not explain. It is calculated by summing the squares of the differences between the observed and the predicted values of the dependent variable.

In the process of model fitting, the SSResid provides a numerical value that helps to gauge how well the model fits the data. A smaller SSResid suggests that the model's predictions closely match the actual data, whereas a larger SSResid indicates discrepancies between observed and predicted values. Minimizing SSResid is one of the objectives in selecting the most appropriate regression model.
Coefficient of Determination
The coefficient of determination, denoted as \(R^{2}\), is a key metric in regression analysis that estimates the proportion of variance in the dependent variable that can be explained by the independent variables in the model.

Values of \(R^{2}\) range from 0 to 1. A value of 0 indicates that the model explains none of the variability of the response data around its mean, while a value of 1 indicates that the model explains all the variability. In practice, a higher \(R^{2}\) value means a better fit of the model to the data. However, it is important not to rely solely on \(R^{2}\) to judge a model's quality since it can be influenced by the number of predictors in the model and does not account for the data's underlying structure.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "Impacts of On-Campus and Off-Campus Work on First-Year Cognitive Outcomes" (Journal of College Student Development \([1994]: 364-370\) ) reported on a study in which \(y=\) spring math comprehension score was regressed against \(x_{1}=\) previous fall test score, \(x_{2}=\) previous fall academic motivation, \(x_{3}=\) age, \(x_{4}=\) number of credit hours, \(x_{5}=\) residence \((1\) if on campus, 0 otherwise), \(x_{6}=\) hours worked on campus, and \(x_{7}=\) hours worked off campus. The sample size was \(n=210\), and \(R^{2}=.543\). Test to see whether there is a useful linear relationship between \(y\) and at least one of the predictors.

Explain the difference between a deterministic and a probabilistic model. Give an example of a dependent variable \(y\) and two or more independent variables that might be related to \(y\) deterministically. Give an example of a dependent variable \(y\) and two or more independent variables that might be related to \(y\) in a probabilistic fashion.

A number of investigations have focused on the problem of assessing loads that can be manually handled in a safe manner. The article "Anthropometric, Muscle Strength, and Spinal Mobility Characteristics as Predictors in the Rating of Acceptable Loads in Parcel Sorting" (Ergonomics [1992]: \(1033-1044\) ) proposed using a regression model to relate the dependent variable \(y=\) individual's rating of acceptable load \((\mathrm{kg})\) to \(k=3\) independent (predictor) variables: \(x_{1}=\) extent of left lateral bending \((\mathrm{cm})\) $$ \begin{aligned} &x_{2}=\text { dynamic hand grip endurance (sec) } \\ &x_{3}=\text { trunk extension ratio }(\mathrm{N} / \mathrm{kg}) \end{aligned} $$ Suppose that the model equation is $$ y=30+.90 x_{1}+.08 x_{2}-4.50 x_{3}+e $$ and that \(\sigma=5\). a. What is the population regression function? b. What are the values of the population regression \(\underline{\mathrm{co}}\) efficients? c. Interpret the value of \(\beta_{1}\). d. Interpret the value of \(\beta_{3}\). e. What is the mean value of rating of acceptable load when extent of left lateral bending is \(25 \mathrm{~cm}\), dynamic hand grip endurance is \(200 \mathrm{sec}\), and trunk extension ratio is \(10 \mathrm{~N} / \mathrm{kg}\) ? f. If repeated observations on rating are made on different individuals, all of whom have the values of \(x_{1}, x_{2}\), and \(x_{3}\) specified in Part (e), in the long run approximately what percentage of ratings will be between \(13.5 \mathrm{~kg}\) and \(33.5 \mathrm{~kg} ?\)

The article "Effect of Manual Defoliation on Pole Bean Yield" (Journal of Economic Entomology [1984]: \(1019-1023\) ) used a quadratic regression model to describe the relationship between \(y=\) yield \((\mathrm{kg} /\) plot \()\) and \(x=\mathrm{de}-\) foliation level (a proportion between 0 and 1 ). The estimated regression equation based on \(n=24\) was \(\hat{y}=\) \(12.39+6.67 x_{1}-15.25 x_{2}\) where \(x_{1}=x\) and \(x_{2}=x^{2} .\) The article also reported that \(R^{2}\) for this model was .902. Does the quadratic model specify a useful relationship between \(y\) and \(x ?\) Carry out the appropriate test using a \(.01\) level of significance.

The article "The Undrained Strength of Some Thawed Permafrost Soils" (Canadian Geotechnical Journal \([1979]: 420-427\) ) contained the accompanying data (see page 778 ) on \(y=\) shear strength of sandy soil \((\mathrm{kPa})\), \(x_{1}=\) depth \((\mathrm{m})\), and \(x_{2}=\) water content \((\%) .\) The predicted values and residuals were computed using the estimated regression equation $$ \begin{aligned} \hat{y}=&-151.36-16.22 x_{1}+13.48 x_{2}+.094 x_{3}-.253 x_{4} \\ &+.492 x_{5} \\ \text { where } x_{3} &=x_{1}^{2}, x_{4}=x_{2}^{2}, \text { and } x_{5}=x_{1} x_{2} \end{aligned} $$ $$ \begin{array}{clrrrrr} \text { Product } & \text { Material } & \text { Height } & \begin{array}{l} \text { Maximum } \\ \text { Width } \end{array} & \begin{array}{l} \text { Minimum } \\ \text { Width } \end{array} & \text { Elongation } & \text { Volume } \\ \hline 1 & \text { glass } & 7.7 & 2.50 & 1.80 & 1.50 & 125 \\ 2 & \text { glass } & 6.2 & 2.90 & 2.70 & 1.07 & 135 \\ 3 & \text { glass } & 8.5 & 2.15 & 2.00 & 1.98 & 175 \\ 4 & \text { glass } & 10.4 & 2.90 & 2.60 & 1.79 & 285 \\ 5 & \text { plastic } & 8.0 & 3.20 & 3.15 & 1.25 & 330 \\ 6 & \text { glass } & 8.7 & 2.00 & 1.80 & 2.17 & 90 \\ 7 & \text { glass } & 10.2 & 1.60 & 1.50 & 3.19 & 120 \\ 8 & \text { plastic } & 10.5 & 4.80 & 3.80 & 1.09 & 520 \\ 9 & \text { plastic } & 3.4 & 5.90 & 5.00 & 0.29 & 330 \\ 10 & \text { plastic } & 6.9 & 5.80 & 4.75 & 0.59 & 570\\\ 11 & \text { tin } & 10.9 & 2.90 & 2.80 & 1.88 & 340 \\ 12 & \text { plastic } & 9.7 & 2.45 & 2.10 & 1.98 & 175 \\ 13 & \text { glass } & 10.1 & 2.60 & 2.20 & 1.94 & 240 \\ 14 & \text { glass } & 13.0 & 2.60 & 2.60 & 2.50 & 240 \\ 15 & \text { glass } & 13.0 & 2.70 & 2.60 & 2.41 & 360 \\ 16 & \text { glass } & 11.0 & 3.10 & 2.90 & 1.77 & 310 \\ 17 & \text { cardboard } & 8.7 & 5.10 & 5.10 & 0.85 & 635 \\ 18 & \text { cardboard } & 17.1 & 10.20 & 10.20 & 0.84 & 1250 \\ 19 & \text { glass } & 16.5 & 3.50 & 3.50 & 2.36 & 650 \\ 20 & \text { glass } & 16.5 & 2.70 & 1.20 & 3.06 & 305 \\ 21 & \text { glass } & 9.7 & 3.00 & 1.70 & 1.62 & 315 \\ 22 & \text { glass } & 17.8 & 2.70 & 1.75 & 3.30 & 305 \\ 23 & \text { glass } & 14.0 & 2.50 & 1.70 & 2.80 & 245 \\ 24 & \text { glass } & 13.6 & 2.40 & 1.20 & 2.83 & 200 \\ 25 & \text { plastic } & 27.9 & 4.40 & 1.20 & 3.17 & 1205 \\ 26 & \text { tin } & 19.5 & 7.50 & 7.50 & 1.30 & 2330 \\ 27 & \text { tin } & 13.8 & 4.25 & 4.25 & 1.62 & 730 \end{array} $$ $$ \begin{array}{rrrrr} {\boldsymbol{y}} & {\boldsymbol{x}_{1}} & \boldsymbol{x}_{2} & \text { Predicted } \boldsymbol{y} & {\text { Residual }} \\ \hline 14.7 & 8.9 & 31.5 & 23.35 & -8.65 \\ 48.0 & 36.6 & 27.0 & 46.38 & 1.62 \\ 25.6 & 36.8 & 25.9 & 27.13 & -1.53 \\ 10.0 & 6.1 & 39.1 & 10.99 & -0.99 \\ 16.0 & 6.9 & 39.2 & 14.10 & 1.90 \\ 16.8 & 6.9 & 38.3 & 16.54 & 0.26 \\ 20.7 & 7.3 & 33.9 & 23.34 & -2.64 \\ 38.8 & 8.4 & 33.8 & 25.43 & 13.37 \\ 16.9 & 6.5 & 27.9 & 15.63 & 1.27 \\ 27.0 & 8.0 & 33.1 & 24.29 & 2.71 \\ 16.0 & 4.5 & 26.3 & 15.36 & 0.64 \\ 24.9 & 9.9 & 37.8 & 29.61 & -4.71 \\ 7.3 & 2.9 & 34.6 & 15.38 & -8.08 \\ 12.8 & 2.0 & 36.4 & 7.96 & 4.84 \\ \hline \end{array} $$ a. Use the given information to compute SSResid, SSTo, and SSRegr. b. Calculate \(R^{2}\) for this regression model. How would you interpret this value? c. Use the value of \(R^{2}\) from Part (b) and a .05 level of significance to conduct the appropriate model utility test.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free