Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The ability of ecologists to identify regions of greatest species richness could have an impact on the preservation of genetic diversity, a major objective of the World Conservation Strategy. The article "Prediction of Rarities from Habitat Variables: Coastal Plain Plants on Nova Scotian Lakeshores" (Ecology [1992]: \(1852-1859\) ) used a sample of \(n=37\) lakes to obtain the estimated regression equation $$ \begin{aligned} \hat{y}=& 3.89+.033 x_{1}+.024 x_{2}+.023 x_{3} \\ &+.008 x_{4}-.13 x_{5}-.72 x_{6} \end{aligned} $$ where \(y=\) species richness, \(x_{1}=\) watershed area, \(x_{2}=\) shore width, \(x_{3}=\) drainage \((\%), x_{4}=\) water color (total color units), \(x_{5}=\) sand \((\%)\), and \(x_{6}=\) alkalinity. The coefficient of multiple determination was reported as \(R^{2}=.83\). Use a test with significance level \(.01\) to decide whether the chosen model is useful.

Short Answer

Expert verified
Given that the \( R^2 = 0.83 \) is high and exceeds the 0.7 - 0.75 benchmark, the model can be considered as significantly useful for predicting species richness based on the given factors. However, a proper F-test would confirm this, which cannot be done here due to unavailability of needed data.

Step by step solution

01

Understand the Model

First, familiarize with the provided multiple linear regression model. Here, the species richness (\(y\)) is predicted based on the variables: watershed area (\(x_1\)), shore width (\(x_2\)), drainage (\(x_3\)), water color (\(x_4\)), sand content (\(x_5\)), and alkalinity (\(x_6\)). The model is considered significantly useful if it explains a significant amount of the variance in \(y\). This is measured by \(R^2\).
02

Null and Alternative Hypothesis

The null hypothesis (\(H_0\)) is that the regression model is not useful, meaning all regression coefficients except the constant are zero. The alternative hypothesis (\(H_a\)) is that at least one regression coefficient is not zero, making the model useful. Formally, these can be written as: \(H_0\): All \(\beta_i = 0\), except perhaps the constant (\(\beta_0\)). \(H_a\): At least one \(\beta_i ≠ 0\) where \(i = 1, 2, ..., 6\).
03

Test Statistic Calculation

In multiple linear regression, the usefulness of the model is often tested using the F-statistic. However, as the F-statistic value is not provided, it cannot be calculated here. Instead, the given coefficient of multiple determination (\(R^2\)) value can be used to gauge the fit of the model
04

Decision Rule

A common practice in stats is to consider a model significantly useful if more than 70-75% of the variance is explained, which is indicated by an \(R^2\) value larger than 0.7-0.75. Hence, with an \(R^2\)value of 0.83, it can be anticipated that model is significantly useful.
05

Conclusion

As the coefficient of multiple determination (\( R^2 = 0.83\)) is high and exceeds the 0.7 - 0.75 benchmark, the model can be considered as significantly useful for predicting species richness based on the given variables. However, a proper F-test should be done to formally test these hypotheses, which unfortunately cannot be done here due to unavailability of needed data.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If we knew the width and height of cylindrical tin cans of food, could we predict the volume of these cans with precision and accuracy? a. Give the equation that would allow us to make such predictions. b. Is the relationship between volume and its predictors, height and width, a linear one? c. Should we use an additive multiple regression model to predict a volume of a can from its height and width? Explain. d. If you were to take logarithms of each side of the equation in Part (a), would the relationship be linear?

The article "The Influence of Temperature and Sunshine on the Alpha-Acid Contents of Hops" (Agricultural Meteorology [1974]: \(375-382\) ) used a multiple regression model to relate \(y=\) yield of hops to \(x_{1}=\) mean temperature \(\left({ }^{\circ} \mathrm{C}\right)\) between date of coming into hop and date of picking and \(x_{2}=\) mean percentage of sunshine during the same period. The model equation proposed is $$ y=415.11-6060 x_{1}-4.50 x_{2}+e $$ a. Suppose that this equation does indeed describe the true relationship. What mean yield corresponds to a temperature of 20 and a sunshine percentage of \(40 ?\) b. What is the mean yield when the mean temperature and percentage of sunshine are \(18.9\) and 43, respectively? c. Interpret the values of the population regression coefficients.

A manufacturer of wood stoves collected data on \(y=\) particulate matter concentration and \(x_{1}=\) flue temperature for three different air intake settings (low, medium, and high). a. Write a model equation that includes dummy variables to incorporate intake setting, and interpret all the \(\beta \mathrm{co}\) efficients. b. What additional predictors would be needed to incorporate interaction between temperature and intake setting?

Consider a regression analysis with three independent variables \(x_{1}, x_{2}\), and \(x_{3}\). Give the equation for the following regression models: a. The model that includes as predictors all independent variables but no quadratic or interaction terms b. The model that includes as predictors all independent variables and all quadratic terms c. All models that include as predictors all independent variables, no quadratic terms, and exactly one interaction term d. The model that includes as predictors all independent variables, all quadratic terms, and all interaction terms (the full quadratic model)

This exercise requires the use of a computer package. The accompanying data resulted from a study of the relationship between \(y=\) brightness of finished paper and the independent variables \(x_{1}=\) hydrogen peroxide (\% by weight), \(x_{2}=\) sodium hydroxide (\% by weight), \(x_{3}=\) silicate \((\%\) by weight \()\), and \(x_{4}=\) process temperature ("Advantages of CE-HDP Bleaching for High Brightness Kraft Pulp Production," TAPPI [1964]: 107A-173A). $$ \begin{array}{ccccc} x_{1} & x_{2} & x_{3} & x_{4} & y \\ \hline .2 & .2 & 1.5 & 145 & 83.9 \\ .4 & .2 & 1.5 & 145 & 84.9 \\ .2 & .4 & 1.5 & 145 & 83.4 \\ .4 & .4 & 1.5 & 145 & 84.2 \\ .2 & .2 & 3.5 & 145 & 83.8 \\ .4 & .2 & 3.5 & 145 & 84.7 \\ .2 & .4 & 3.5 & 145 & 84.0 \\ .4 & .4 & 3.5 & 145 & 84.8 \\ .2 & .2 & 1.5 & 175 & 84.5 \\ .4 & .2 & 1.5 & 175 & 86.0 \\ .2 & .4 & 1.5 & 175 & 82.6 \\ .4 & .4 & 1.5 & 175 & 85.1 \\ .2 & .2 & 3.5 & 175 & 84.5 \\ .4 & .2 & 3.5 & 175 & 86.0 \\ .2 & .4 & 3.5 & 175 & 84.0 \\ .4 & .4 & 3.5 & 175 & 85.4 \\ .1 & .3 & 2.5 & 160 & 82.9 \\ .5 & .3 & 2.5 & 160 & 85.5\\\ .3 & .1 & 2.5 & 160 & 85.2 \\ .3 & .5 & 2.5 & 160 & 84.5 \\ .3 & .3 & 0.5 & 160 & 84.7 \\ .3 & .3 & 4.5 & 160 & 85.0 \\ .3 & .3 & 2.5 & 130 & 84.9 \\ .3 & .3 & 2.5 & 190 & 84.0 \\ .3 & .3 & 2.5 & 160 & 84.5 \\ .3 & .3 & 2.5 & 160 & 84.7 \\ .3 & .3 & 2.5 & 160 & 84.6 \\ .3 & .3 & 2.5 & 160 & 84.9 \\ .3 & .3 & 2.5 & 160 & 84.9 \\ .3 & .3 & 2.5 & 160 & 84.5 \\ .3 & .3 & 2.5 & 160 & 84.6 \end{array} $$ a. Find the estimated regression equation for the model that includes all independent variables, all quadratic terms, and all interaction terms. b. Using a \(.05\) significance level, perform the model utility test. c. Interpret the values of the following quantities: SSResid, \(R^{2}, s_{e}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free